1 Problems

Putnam 2006/B1. Show that the curve \(x^3 + 3xy + y^3 = 1 \) contains only one set of three distinct points \(A, B, \) and \(C \), which are vertices of an equilateral triangle, and find its area.

Putnam 2006/B2. Prove that for every set \(X = \{x_1, \ldots, x_n\} \) of real numbers, there exists a non-empty subset \(S \) of \(X \) and an integer \(m \) such that
\[
\left| m + \sum_{s \in S} s \right| \leq \frac{1}{n+1}.
\]

Putnam 2006/B3. Let \(S \) be a finite set of points in the plane. A linear partition of \(S \) is an unordered pair \(\{A, B\} \) of subsets of \(S \) such that \(A \cup B = S \), \(A \cap B = \emptyset \), and \(A \) and \(B \) lie on opposite sides of some straight line disjoint from \(S \) (\(A \) or \(B \) may be empty). Let \(L_S \) be the number of linear partitions of \(S \). For each positive integer \(n \), find the maximum of \(L_S \) over all sets \(S \) of \(n \) points.