1 Problems

Putnam 2009/A1. Let \(f \) be a real-valued function on the plane such that for every square \(ABCD \) in the plane, \(f(A) + f(B) + f(C) + f(D) = 0 \). Does it follow that \(f(P) = 0 \) for all points \(P \) in the plane?

Putnam 2009/A2. Functions \(f, g, h \) are differentiable on some open interval around 0 and satisfy the equations and initial conditions

\[
\begin{align*}
 f' &= 2f^2 gh + \frac{1}{gh}, \quad f(0) = 1, \\
 g' &= fg^2 h + \frac{4}{fgh}, \quad g(0) = 1, \\
 h' &= 3fgh^2 + \frac{1}{fg}, \quad h(0) = 1.
\end{align*}
\]

Find an explicit formula for \(f(x) \), valid in some open interval around 0.

Putnam 2009/A3. Let \(d_n \) be the determinant of the \(n \times n \) matrix whose entries, from left to right and then from top to bottom, are \(\cos 1, \cos 2, \ldots, \cos(n^2) \). For example, \(d_3 \) is the determinant of the matrix

\[
\begin{pmatrix}
 \cos 1 & \cos 2 & \cos 3 \\
 \cos 4 & \cos 5 & \cos 6 \\
 \cos 7 & \cos 8 & \cos 9
\end{pmatrix}.
\]

Note: The argument of cosine is always in radians, not degrees. Evaluate \(\lim_{n \to \infty} d_n \).

Putnam 2009/A4. Let \(S \) be a set of rational numbers such that

(a) \(0 \in S \);
(b) If \(x \in S \), then \(x + 1 \in S \) and \(x - 1 \in S \); and
(c) If \(x \in S \) and \(x \neq \{0, 1\} \), then \(\frac{1}{x(x-1)} \in S \).

Must \(S \) contain all rational numbers?

Putnam 2009/A5. Is there a finite abelian group \(G \) such that the product of the orders of all its elements is \(2^{2009} \)?

Putnam 2009/A6. Let \(f : [0,1]^2 \to \mathbb{R} \) be a continuous function on the closed unit square such that \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \) exist and are continuous on the interior \((0,1)^2 \). Let \(a = \int_0^1 f(0,y)dy, b = \int_0^1 f(1,y)dy, c = \int_0^1 f(x,0)dx \), and \(d = \int_0^1 f(x,1)dx \). Prove or disprove: There must be a point \((x_0, y_0) \) in \((0,1)^2 \) such that

\[
\frac{\partial f}{\partial x}(x_0, y_0) = b - a \quad \text{and} \quad \frac{\partial f}{\partial y}(x_0, y_0) = d - c.
\]