11. Integer polynomials

Po-Shen Loh
CMU Putnam Seminar, Fall 2013

1 Famous results

Divisibility. If a and b are integers, and $p(x)$ is a polynomial with integer coefficients, then $p(a) - p(b)$ is always divisible by $a - b$.

Chinese remainder theorem. Let m_1, m_2, \ldots, m_k be positive integers which are pairwise relatively prime, and let a_1, \ldots, a_k be arbitrary integers. Then, the following system has integer solutions for x:

\begin{align*}
x &\equiv a_1 \pmod{m_1} \\
x &\equiv a_2 \pmod{m_2} \\
&\vdots \\
x &\equiv a_k \pmod{m_k},
\end{align*}

and all solutions x have the same residue modulo the product $m_1m_2\cdots m_k$.

Gauss’s lemma. Non-constant integer polynomials which are irreducible over \mathbb{Z} are also irreducible over \mathbb{Q}.

Eisenstein’s criterion. Suppose that $f(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0$, and there is a prime number p such that (i) p divides each of $a_0, a_1, \ldots, a_{n-1}$, (ii) p does not divide a_n, and (iii) p^2 does not divide a_0. Then, $f(x)$ is irreducible over \mathbb{Q}.

2 Problems

1. Albert Einstein and Homer Simpson are playing a game in which they are creating a polynomial

$$p(x) = x^{2012} + a_{2011}x^{2011} + \cdots + a_1x + a_0.$$

They take turns choosing one of the coefficients a_0, \ldots, a_{2011}, assigning a real value to it (even though the topic of this week is integer polynomials). Once a value is assigned to a coefficient, it cannot be overwritten in a future turn, and the game ends when all coefficients have been assigned. Albert moves first. Homer’s goal is to make $p(x)$ divisible by a fixed polynomial $m(x)$, and Albert’s goal is to prevent this.

(a) Which of the players has a winning strategy if $m(x) = x - 2012$?

(b) What if $m(x) = x^2 + 1$?

2. Let p, q, and s be nonconstant integer polynomials such that $p(x) = q(x)s(x)$. Suppose that the polynomial $p(x) - 2008$ has at least 81 distinct integer roots. Prove that the degree of q must be greater than 5.
3. Let \(p \) be a quadratic polynomial with integer coefficients. Suppose that \(p(z) \) is divisible by 5 for every integer \(z \). Prove that all coefficients of \(p \) are divisible by 5.

4. Let \(x, y, z \) be integers such that \(x^4 + y^4 + z^4 \) is divisible by 29. Prove that \(x^4 + y^4 + z^4 \) is actually divisible by \(29^4 \).

5. Let \(p \) be a polynomial with integer coefficients, and let \(a_1, \ldots, a_k \) be distinct integers. Prove that there always exists an \(a \in \mathbb{Z} \) such that \(p(a) | p(a_i) \) for all \(i \).

6. Let \(f(x) \) be a rational function, i.e., there are polynomials \(p \) and \(q \) such that \(f(x) = p(x)/q(x) \) for all \(x \). Prove that if \(f(n) \) is an integer for infinitely many integers \(n \), then \(f \) is actually a polynomial.

7. Let \(a, b \) be integers. Show that the set \(\{ ax^2 + by^2 : x, y \in \mathbb{Z} \} \) misses infinitely many integers.

8. Let \(a, b \) be integers. Show that the set \(\{ ax^5 + by^5 : x, y \in \mathbb{Z} \} \) misses infinitely many integers.

9. Let \(a, b, n \) be integers (\(n \) positive) for which the set \(\{ ax^n + by^n : x, y \in \mathbb{Z} \} \) includes all but finitely many integers. Prove that \(n = 1 \).

10. Let \(p \) be a polynomial with real coefficients and degree \(n \). Suppose that \(\frac{p(b) - p(a)}{b - a} \) is an integer for all \(0 \leq a < b \leq n \). Prove that \(\frac{p(b) - p(a)}{b - a} \) is an integer for all pairs of distinct integers \(a < b \).

3 Homework

Please write up solutions to two of the problems, to turn in at next week’s meeting. One of them may be a problem that we discussed in class.