1 Problems

Putnam 1994/A4. Let A and B be 2×2 matrices with integer entries such that $A, A + B, A + 2B, A + 3B,$ and $A + 4B$ are all invertible matrices whose inverses have integer entries. Show that $A + 5B$ is invertible and that its inverse has integer entries.

Putnam 1994/A5. Let $(r_n)_{n \geq 0}$ be a sequence of positive real numbers such that $\lim_{n \to \infty} r_n = 0$. Let S be the set of numbers representable as a sum

$$r_{i_1} + r_{i_2} + \cdots + r_{i_{1994}},$$

with $i_1 < i_2 < \cdots < i_{1994}$. Show that every nonempty interval (a, b) contains a nonempty subinterval (c, d) that does not intersect S.

Putnam 1994/A6. Let f_1, \ldots, f_{10} be bijections of the set of integers such that for each integer n, there is some composition $f_{i_1} \circ f_{i_2} \circ \cdots \circ f_{i_m}$ of these functions (allowing repetitions) which maps 0 to n. Consider the set of 1024 functions

$$\mathcal{F} = \{f_{i_1}^{e_1} \circ f_{i_2}^{e_2} \circ \cdots \circ f_{i_{10}}^{e_{10}}\},$$

$e_i = 0$ or 1 for $1 \leq i \leq 10$. (f_i^0 is the identity function and $f_i^1 = f_i$.) Show that if A is any nonempty finite set of integers, then at most 512 of the functions in \mathcal{F} map A to itself.