1 Problems

Putnam 1987/B1. Evaluate
\[\int_2^4 \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x) + \sqrt{\ln(x+3)}}} \, dx. \]

Putnam 1987/B2. Let \(r, s, \) and \(t \) be integers with \(0 \leq r, 0 \leq s, \) and \(r+s \leq t. \) Prove that
\[\binom{s}{0} \binom{t}{r} + \binom{s}{1} \binom{t}{r+1} + \cdots + \binom{s}{s} \binom{t}{r+s} = \frac{t+1}{(t+1-s)(t-r)}. \]

Putnam 1987/B3. Let \(F \) be a field in which \(1+1 \neq 0. \) Show that the set of solutions to the equation \(x^2 + y^2 = 1 \) with \(x \) and \(y \) in \(F \) is given by \((x, y) = (1, 0)\) and
\[(x, y) = \left(\frac{r^2 - 1}{r^2 + 1}, \frac{2r}{r^2 + 1} \right), \]
where \(r \) runs through the elements of \(F \) such that \(r^2 \neq -1. \)