12. Integer polynomials

Po-Shen Loh
CMU Putnam Seminar, Fall 2012

1 Classical results

Vandermonde determinant. Let \(a_0, a_1, \ldots, a_n \) be distinct numbers, and let \(b_0, b_1, \ldots, b_n \) be arbitrary (possibly equal to each other or to any of the \(a_i \)). Then there is a unique polynomial \(p(x) = c_n x^n + \cdots + c_0 \) such that \(p(a_i) = b_i \) for all \(0 \leq i \leq n \).

Lagrange interpolation. An expression for the above polynomial is

\[
p(x) = \sum_{i=0}^{n} \frac{b_i}{\prod_{j \neq i} (a_i - a_j)} \prod_{j \neq i} (x - a_j).
\]

Fermat’s Last Theorem. The equation \(x^n + y^n = z^n \) has no positive integer solutions \((x, y, z, n)\) with \(n \geq 3 \).

2 Problems

Putnam 1940/A1. Let \(p(x) \) be a polynomial with integer coefficients. Suppose that for some positive integer \(c \), none of \(p(1), p(2), \ldots, p(c) \) are divisible by \(c \). Prove that \(p(b) \) is not zero for any integer \(b \).

Putnam 1947/B5. Let \(p(x) \) be the polynomial \((x - a)(x - b)(x - c)(x - d) \). Assume \(p(x) = 0 \) has four distinct integral roots and that \(p(x) = 4 \) has an integral root \(k \). Show that \(k \) is the mean of \(a, b, c, d \).

Putnam 1953/B2. Let \(p(x) \) be a real polynomial of degree \(n \) such that \(p(m) \) is integral for all integers \(m \). Show that if \(k \) is a coefficient of \(p(x) \), then \(n!k \) is an integer.

Putnam 1940/B5. Find all rational triples \((a, b, c)\) for which \(a, b, c \) are the roots of \(x^3 + ax^2 + bx + c = 0 \).

Putnam 1955/A6. For what positive integers \(n \) does the polynomial \(p(x) = x^n + (2 + x)^n + (2 - x)^n \) have a rational root?

Putnam 1950/A6. Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n \), and suppose that each \(a_n \) is 0 or 1.

1. Show that if \(f(1/2) \) is rational, then \(f(x) \) has the form \(p(x)/q(x) \) for some integer polynomials \(p(x) \) and \(q(x) \).

2. Show that if \(f(1/2) \) is not rational, then \(f(x) \) does not have the form \(p(x)/q(x) \) for any integer polynomials \(p(x) \) and \(q(x) \).

3 Homework

Please write up solutions to two of the problems, to turn in at next week’s meeting. One of them may be a problem that we discussed in class.