1 Problems

Putnam 2002/B4. An integer \(n \), unknown to you, has been randomly chosen in the interval \([1, 2002]\) with uniform probability. Your objective is to select \(n \) in an odd number of guesses. After each incorrect guess, you are informed whether \(n \) is higher or lower, and you must guess an integer on your next turn among the numbers that are still feasibly correct. Show that you have a strategy so that the chance of winning is greater than \(\frac{2}{3} \).

Putnam 2002/B5. A palindrome in base \(b \) is a positive integer whose base-\(b \) digits read the same backwards and forwards; for example, 2002 is a 4-digit palindrome in base 10. Note that 200 is not a palindrome in base 10, but it is the 3-digit palindrome 242 in base 9, and 404 in base 7. Prove that there is an integer which is a 3-digit palindrome in base \(b \) for at least 2002 different values of \(b \).

Putnam 2002/B6. Let \(p \) be a prime number. Prove that the determinant of the matrix

\[
\begin{pmatrix}
x & y & z \\
x^p & y^p & z^p \\
x^{p^2} & y^{p^2} & z^{p^2}
\end{pmatrix}
\]

is congruent modulo \(p \) to a product of polynomials of the form \(ax + by + cz \), where \(a, b, c \) are integers. (We say two integer polynomials are congruent modulo \(p \) if corresponding coefficients are congruent modulo \(p \).)