1 Problems

Putnam 2003/A4. Suppose that a, b, c, A, B, C are real numbers, $a \neq 0$ and $A \neq 0$, such that

$$|ax^2 + bx + c| \leq |Ax^2 + Bx + C|$$

for all real numbers x. Show that

$$|b^2 - 4ac| \leq |B^2 - 4AC|.$$

Putnam 2003/A5. A Dyck n-path is a lattice path of n upsteps $(1, 1)$ and n downsteps $(1, -1)$ that starts at the origin O and never dips below the x-axis. A return is a maximal sequence of contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path illustrated has two returns, of length 3 and 1 respectively.

![Dyck 5-path](image)

Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even length and the Dyck $(n - 1)$-paths.

Putnam 2003/A6. For a set S of non-negative integers, let $r_S(n)$ denote the number of ordered pairs (s_1, s_2) such that $s_1 \in S, s_2 \in S, s_1 \neq s_2,$ and $s_1 + s_2 = n$. Is it possible to partition the non-negative integers into two sets A and B in such a way that $r_A(n) = r_B(n)$ for all n?