1 Problems

Putnam 1990/B1. Find all real-valued continuously differentiable functions f on the real line such that for all x,

$$(f(x))^2 = \int_0^x [(f(t))^2 + (f'(t))^2] \, dt + 1990.$$

Putnam 1990/B2. Prove that for $|x| < 1$, $|z| > 1$,

$$1 + \sum_{j=1}^{\infty} (1 + x^j)P_j = 0,$$

where P_j is

$$\frac{(1 - z)(1 - zx)(1 - zx^2) \cdots (1 - zx^{j-1})}{(z - x)(z - x^2)(z - x^3) \cdots (z - x^j)}.$$

Putnam 1990/B3. Let S be a set of 2×2 integer matrices whose entries a_{ij} (1) are all squares of integers and, (2) satisfy $a_{ij} \leq 200$. Show that if S has more than 50387 ($= 15^4 - 15^2 - 15 + 2$) elements, then it has two elements that commute.