1 Problems

Putnam 1991/B1. For each integer \(n \geq 0 \), let \(S(n) = n - m^2 \), where \(m \) is the greatest integer with \(m^2 \leq n \). Define a sequence \((a_k)_{k=0}^{\infty}\) by \(a_0 = A \) and \(a_{k+1} = a_k + S(a_k) \) for \(k \geq 0 \). For what positive integers \(A \) is this sequence eventually constant?

Putnam 1991/B2. Suppose \(f \) and \(g \) are non-constant, differentiable, real-valued functions defined on \((-\infty, \infty)\). Furthermore, suppose that for each pair of real numbers \(x \) and \(y \),

\[
\begin{align*}
 f(x + y) &= f(x)f(y) - g(x)g(y), \\
 g(x + y) &= f(x)g(y) + g(x)f(y).
\end{align*}
\]

If \(f'(0) = 0 \), prove that \((f(x))^2 + (g(x))^2 = 1 \) for all \(x \).

Putnam 1991/B3. Does there exist a real number \(L \) such that, if \(m \) and \(n \) are integers greater than \(L \), then an \(m \times n \) rectangle may be expressed as a union of \(4 \times 6 \) and \(5 \times 7 \) rectangles, any two of which intersect at most along their boundaries?