1 Problems

Putnam 1993/B1. Find the smallest positive integer n such that for every integer m with $0 < m < 1993$, there exists an integer k for which
\[\frac{m}{1993} < \frac{k}{n} < \frac{m + 1}{1994}. \]

Putnam 1993/B2. Consider the following game played with a deck of $2n$ cards numbered from 1 to $2n$. The deck is randomly shuffled and n cards are dealt to each of two players. Beginning with A, the players take turns discarding one of their remaining cards and announcing its number. The game ends as soon as the sum of the numbers on the discarded cards is divisible by $2n + 1$. The last person to discard wins the game. Assuming optimal strategy by both A and B, what is the probability that A wins?

Putnam 1993/B3. Two real numbers x and y are chosen at random in the interval $(0, 1)$ with respect to the uniform distribution. What is the probability that the closest integer to x/y is even? Express the answer in the form $r + s\pi$, where r and s are rational numbers.