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Abstract

An n-lift of a digraph K, is a digraph with vertex set V (K)× [n] and for each directed
edge (i, j) ∈ E(K) there is a perfect matching between fibers {i} × [n] and {j} × [n], with
edges directed from fiber i to fiber j. If these matchings are chosen independently and
uniformly at random then we say that we have a random n-lift. We show that if h is
sufficiently large then a random n-lift of the complete digraph ~Kh is hamiltonian whp.

1 Introduction

For a graph K, an n-lift G of K has vertex set V (K) × [n] where for each vertex v ∈ V (K),
{v} × [n] is called the fiber above v and will be denoted by Fv. The edge set of a an n-lift G
consists of a perfect matching between fibers Fu and Fw for each edge (u, w) ∈ E(K). The set
of n-lifts will be denoted Λn(K). In this paper we discuss random n-lifts, chosen uniformly from
Λn(K). In this case, the matchings between fibers are chosen independently and uniformly at
random.

Lifts of graphs were introduced by Amit and Linial in [1] where they proved that if K is a
connected, simple graph with minimum degree δ ≥ 3, and G is chosen randomly from Λn(K)
then G is δ−connected whp, where the asymptotics are for n →∞. They continued the study
of random lifts in [2] where they proved expansion properties of lifts. Together with Matoušek,
they gave bounds on the independence number and chromatic number of random lifts in [3].
Linial and Rozenman [4] give a tight analysis for when a random n-lift has a perfect matching.

Burgin, Chebolu, Cooper and Frieze [6] showed that a random n-lift of the complete graph Kh

is hamiltonian, provided h is sufficiently large. In this paper we study a directed version of the
question. An n-lift of a digraph K, is a digraph with vertex set V (K)× [n] and for each directed
edge (i, j) ∈ E(K) there is a perfect matching between fibers {i} × [n] and {j} × [n], with edges
directed from fiber i to fiber j.

We use the notation y
r
∈ Y for “y is chosen uniformly at random from Y ”. We let ~Kh denote

the complete digraph on vertex set [h]. Note that here there are edges in both directions (u, v)
∗Research supported in part by NSF Grant ccf0502793
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and (v, u) for all u 6= v ∈ [h].

Theorem 1. If h is sufficiently large and D
r
∈ Λn( ~Kh) then D is hamiltonian whp.

We will use the 3-phase method used in Cooper and Frieze [7, 8], Cooper, Frieze and Molloy [9]
and Frieze, Karp and Reed [12].

A permutation digraph is a set of vertex disjoint directed cycles that cover all n vertices. Its size
is the number of cycles.

Phase 1. We show that whp the lift D contains a directed permutation digraph of size at most
2 ln n.

Phase 2. We increase the minimum cycle length in the permutation digraph to at least

n0 =
⌈

100nh3

ln n

⌉
.

Phase 3. We convert the Phase 2 permutation digraph to a Hamilton cycle.

The main difficulty involved in implementing this strategy comes from Phase 3. This is basically
a second moment calculation, but it needs a trick to reduce the variance. The idea of the trick
is from [7], but implementing the idea has turned out to be quite difficult. This is basically the
content of Section 4 where we prove a lower bound on the number of Hamilton cycles of a certain
type in a digraph of high degree.

We use the following standard inequalities for the tails of the binomial distribution:

Pr(|B(n, p)− np| ≥ εnp) ≤ 2e−ε2np/3, 0 ≤ ε ≤ 1, (1)
Pr(B(n, p) ≥ anp) ≤ (e/a)anp. (2)

2 Phase 1. Making a permutation digraph with at most
2 log n cycles

Lemma 1. Suppose that D
r
∈ Λn( ~Kh). Then whp D contains a permutation digraph with at

most 2 ln n cycles.

Proof Let X0 denote the Hamilton cycle (1, 2, ..., h) of Kh. Let Fi be the fiber of D
corresponding to i. Let ri,j be the permutation defined by the matching Mi,j from fiber Fi to
fiber Fj in the lift D i.e. the edges of Mi,j are {(i, k), (j, ri,j(k)) : k ∈ [n]}. Let r = rh,1 o rh−1,h o
· · · o r1,2. r defines a permutation of fiber F1. The permutation digraph {(i, x), (i+1, ri,i+1(x)) :
i ∈ [h], x ∈ [n]} has as many cycles as the permutation r. The permutation r is a random
permutation as it is the composition of random permutations. We know that the number of
cycles in a random permutation is at most 2 lnn whp, see for example Bollobás [5]. �

We partition the cycles of the permutation digraph Σ0 into sets SMALL and LARGE, containing
small cycles C of length |C| < n0 and large cycles |C| ≥ n0 respectively.

In a random permutation the expected number of vertices on cycles of length at most n0 is pre-
cisely n0 ([13]). Thus, by the Markov inequality, whp Σ0 contains at most nh log log n/(4 log n)
vertices on small cycles.

Thus at the end of Phase 1, we can assume we have a permutation digraph Σ0 of size at most
2 ln n and which contains at most nh log log n/(4 log n) vertices on cycles of length ≤ n0. Let E0

denote the edges D that are not in Σ0.
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3 Phase 2. Removing small cycles

We now denote the vertices in the lift by vi,k where i ∈ [h] and k ∈ [n]. We define a Near
Permutation Digraph (NPD) to be a digraph obtained from a permutation digraph by removing
one edge. Thus an NPD Γ consists of a path P (Γ) plus a permutation digraph PD(Γ) which
covers ([h]× [n]) \ V (P (Γ)).

Each step of the process we are about to describe involves the exposure of an edge (vi,k, vi′,k′).
When an edge is exposed in this way in Phase 2, we say that the two endpoints are used. The set
of used vertices is denoted by W . Initially, W = ∅, and we ensure that |W | ≤ n3/4 throughout.
At any time therefore, the process is conditioned by the knowledge of partial matchings M ′

i,j

between the fibers Fi and Fj for i 6= j. (The matchings Mi,i+1 have of course been completely
exposed in Phase 1). For j 6= i, i + 1, the unexposed part of Mi,j will be a uniform extension of
M ′

i,j . So, in particular, when we examine a vertex vi,k 6∈ W , the Mi,j edge incident with vi,k is
chosen uniformly from a set of size n− o(n).

We now give an informal description of a process which removes a small cycle C from a current
permutation digraph Σ. We break this process into an Out-Phase and an In-Phase. We start
by choosing an (arbitrary) edge (vi,j0 , vi+1,k0) of C and delete it to obtain an NPD Γ0 with
P0 = P (Γ0) ∈ P(vi+1,k0 , vi,j0), where P(x, y) denotes the set of paths from x to y in D. The
aim of the process is to produce a large set S of NPD’s such that for each Γ ∈ S, (i) P (Γ)
has a least n0 edges and (ii) the small cycles of PD(Γ) are a strict subset of the small cycles
of Σ. We will show that whp the endpoints of one of the P (Γ)’s can be joined by an edge to
create a permutation digraph with (at least) one less small cycle. This completes the informal
description.

We now give a fairly formal description, but we leave out some details for later. We produce
a sequence S0 = {Γ0}, S1, S2, . . . , St, . . . of sets of NPD’s. Fix t > 0 and Γ ∈ St−1 and let v
be the terminal endpoint of P (Γ). We examine the h − 2 edges of E0 leaving v i.e. the edges
going out from the end of the path. Let wj , 1 ≤ j ≤ h − 2 be the terminal vertices of these
edges, and assume that Γ contains edges (xj , wj), 1 ≤ j ≤ h − 2. Then for 1 ≤ j ≤ h − 2,
Γj = Γ∪ {(v, wj)} \ {(xj , wj)} is added to St, assuming that the edge (v, wj) is acceptable w.r.t.
Γ. We call this an acceptable out-step. An (v, w) is acceptable if the following is true: Suppose
that P (Γ) ∈ P(., v). Let Γ′ = Γ ∪ {(v, w)} \ {(x,w)} where (x, w) ∈ E(Γ). We say that we use
w.

(i) P (Γ′) contains at least n0 edges.

(ii) Any new cycle created (i.e. in Γ′ and not in Γ) also has at least n0 edges.

(iii) w does not lie on a small cycle of Γ.

(iv) P (Γ′) ∈ P(., x) where x has not been used before in Phase 2.

If Γj contains no edge (xj , wj) then wj = vi+1,k0 . We accept the edge if P (Γj) has at least n0

edges. This would create a PD and (prematurely) end an iteration, although it is unlikely to
occur.

Each member of St−1 (usually) has h − 2 descendants in St and in this way we build a tree T0

of NPD’s in a natural breadth-first fashion where each non-leaf Γ at depth t is an element of St.
By construction, all paths P (Γ), Γ ∈ T0 will have the same start vertex viz. the head vi+1,k0

of the edge deleted from the small cycle C. The construction of T0 ends when we first have
ν =

⌈√
n log n

⌉
leaves. The construction of T0 constitutes an Out-Phase of our procedure to

eliminate small cycles. Having constructed T0 we need to do a further In-Phase, which is similar
to a set of Out-Phases.
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Then whp we close at least one of the paths P (Γ) to a cycle of length at least n0. If this process
fails then we try again with a different independent edge of C in place of (vi,j0 , vi+1,k0). If we
succeed we move on to the next small cycle.

We now fill in the details. We start Phase 2 with a permutation digraph Σ0 and a general
iteration of Phase 2 starts with a permutation digraph Σ whose small cycles are a subset of
those in Σ0. Iterations continue until there are no more small cycles. At the start of an iteration
we choose some small cycle C of Σ. There then follows an Out-Phase in which we construct a
tree T0 = T0(Σ, C) of NPD’s as follows: The root of T0 is Γ0 which is obtained by deleting an
edge (vi,j0 , vi+1,k0) of C.

We grow T0 to a depth O(log n). The set of nodes at depth t will be St. Γ ∈ St−1 with
P = P (Γ) ∈ P(vi,j0 , v), v ∈ Fi, has up to h− 2 descendants in St.

Lemma 2. Let C ∈ SMALL. Then, where ν =
⌈√

n log n
⌉
,

Pr(∃t <
⌈
logh/2 ν + 500 log log n

⌉
such that |St| ∈ [ν, 3ν]) = 1−O((log log n)3/ log n).

Proof We assume that we stop construction of T0, in mid-phase if necessary, when |St| ∈
[ν, 3ν]. Let us consider a generic construction in the growth of T0.

For an NPD Γ with P (Γ) ∈ P(vi,j0 , v) we let Zj(Γ) be the 0-1 indicator for the edge (v, wj) being
unacceptable. If Zj(v) = 1 then either (a) wj lies on P (Γ) and is too close to an endpoint; this
has probability bounded above by 201h3/ log n, or (b) the corresponding vertex xj is in W ; this
has probability bounded above by 2n−1/4, or (c) wj lies on a small cycle of Γ and hence of Σ0;
this has probability bounded above by log log n/3 log n. Then Pr(Zj(Γ) = 1) ≤ log log n/2 log n
regardless of the history of the process to this point.

Let Zt =
∑

Γ∈St−1

∑
j Zj(Γ). Zt is the sum of possibly dependent random variables, but it is

stochastically dominated by the binomial B((h− 2)|St|, log log n/ log n).

We write
|St+1| = (h− 2)|St| − Zt.

Now let t0 = d1000 log log ne, t1 =
⌈
logh/2 ν + 1000 log log n

⌉
.

(a) Pr(∃t ≤ t0 : |St| ≤ 500 log log n and Zt > 0) = O((log log n)3/ log n)

(b) Pr(∃t ≤ t1 : |St| ≥ 500 log log n and Zt > h|St|/100) ≤ (log n)−Ω(log log n).

(a) Pr(Zt > 0 | |St| ≤ 500 log log n) = O((log log n)2/ log n) by the Markov inequality.

(b) Immediate from (2).

Let Ea and Eb be the low probability events described in (a) and (b) above. Assume the occurrence
of Ēa ∩ Ēb. Ēa implies that |St| reaches size at least 500 log log n before t reaches t0. Once this
happens, Ēb implies that |St| then grows geometrically with t up to time t1 at a rate of at least
h/2. The lemma follows. �

The total number of vertices added to W in this way throughout the whole of Phase 2 is
O(ν|SMALL|) = o(n3/4). We try this process once or twice for each C ∈ SMALL.

Let t∗ denote the value of t when we stop the growth of T0. At this stage we have leaves Γk, for
k = 1, . . . , ν, each with a path of length at least n0, (unless we have already successfully made
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a cycle). We now execute an In-Phase. This involves the construction of trees Tk, k = 1, 2, . . . ν.
Assume that P (Γk) ∈ P(vi+1,k0 , vi,`k

). Notice that the start vertex of each of these paths is the
same viz. the head vi+1,k0 of the edge deleted from the small cycle C. We start with Γk and build
Tk in a similar way to T0 except that here all paths generated end with vi,`k

. This is done as
follows: If a current NPD Γ has P (Γ) ∈ P(u, vi,`k

) then we consider adding an edge (w, u) ∈ E0

and deleting an edge (w, x) ∈ Γ. Thus our trees are grown by considering edges directed into the
start vertex of each P (Γ) rather than directed out of the end vertex. Some technical changes are
necessary however. We consider the construction of our ν trees in two stages. First of all we grow
the trees only enforcing (an in-analogue of) condition (iv) of acceptability and thus allow the
formation of small cycles and paths. We try to grow them to depth t1. The growth of the ν trees
can naturally be considered to occur simultaneously. Let Lk,` denote the set of start vertices of
the paths associated with the nodes at depth ` of the kth tree, k = 1, 2 . . . , ν, ` = 0, 1, . . . , t1.
Thus Lk,0 = {vi+1,k0} for all k. We prove inductively that

Lk,` = L1,` for all k, `. (3)

In fact if Lk,` = L1,` then the acceptable E0 edges have the same set of initial vertices and since
all of the deleted edges are Σ0-edges (enforced by (iv)) we have Lk,`+1 = L1,`+1. Note that the
number of nodes in each tree is O(ht1+1) = O(n3/5) if h is sufficiently large. Although we grow
many trees, because of (3), the actual number of vertices used in total is O(n3/5) and this is
why we can claim that whp |W | ≤ n3/4 throughout.

The probability that we succeed in constructing trees T1, T2, . . . Tν is, by the analysis of Lemma
3, 1−O((log log n)3/ log n).

We now consider the fact that in some of the trees some of the leaves may have been constructed
in violation of (i)–(iii). We imagine that we prune the trees T1, T2, . . . Tν by disallowing any node
that was constructed in violation of (i)–(iii). Let a tree be BAD if after pruning it has less than
ν leaves and GOOD otherwise. Now an individual pruned tree has been constructed in the same
manner as the tree T0 obtained in the Out-Phase. (We have chosen t1 to obtain ν leaves even at
the slowest growth rate of h/2 per node as asked for at the end of the proof of Lemma 2.) Thus

Pr(T1 is BAD) = O

(
(log log n)3

log n

)
and

E(number of BAD trees) = O

(
ν(log log n)3

log n

)
and

Pr(∃ ≥ ν/2 BAD trees) = O

(
(log log n)3

log n

)
.

Thus

Pr(∃ < ν/2 GOOD trees after pruning)
≤ Pr(failure to construct T1, T2, . . . Tν) + Pr(∃ ≥ ν/2 BAD trees)

= O

(
(log log n)3

log n

)

Thus with probability 1-O((log log n)3/ log n) we end up with ν/2 sets of ν paths, each of length
at least 100nh3/ log n. All paths in one set have the same terminal vertex. Suppose that v ∈ Fi

is the common terminal vertex of one set. If a path in this set begins with a vertex in Fi+1 then
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we attempt to change the fiber of its start vertex to Fk, k 6= i + 1 by performing an acceptable
in-step. We will succeed with probability 1− o(1), given the previous history. Thus assume that
we have ν/2 sets of ν/2 paths where if the initial vertex is in fiber Fi then the terminal vertex
is not in fiber Fi−1. Given this,

Pr(no E0 edge closes one of these paths) ≤
(

1− ν

2n(1− o(1))

)ν/2

= O(n−1/4).

Consequently the probability that we fail to eliminate a particular small cycle C after breaking an
edge is O((log log n)3/ log n). For every C ∈ SMALL we have |C| ≥ h and so it is possible to try
once or twice using independent edges of C and so the probability that we fail to eliminate a given
small cycle C is certainly O((log log n)6/(log n)2) (remember that we calculated all probabilities
conditional on previous outcomes and assuming |W | ≤ n3/4.) Hence, since whp |C| = O(log n),

Lemma 3. The probability that Phase 2 fails to produce a permutation digraph with minimal
cycle length at least n0 is o(1).

At this stage we have shown that if h is sufficiently large than D almost always contains a
permutation digraph Σ∗ in which the minimum cycle length is at least n0.

We shall refer to Σ∗ as the Phase 2 permutation digraph.

Now all the cycles of the PD Σ0 defined in Phase 1 have lengths divisible by h. Also, as we
traverse a cycle the fibers encountered are F1, F2, . . . , Fh, F1, . . . ,. Now Σ∗ is obtained from Σ0 by
replacing O((log n)2) edges. By considering the unbroken sections of Σ0 which pass through the
fibers in order, we see that for each i, a cycle of length ` in Σ∗ contains at least `/h−O((log n)2)
edges from fiber Fi to Fi+1.

4 Deterministic Problem

In this section we give a lower bound to the number of a certain type of Hamilton cycle in a
digraph with large minimum in-degree and out-degree.

Let Γ be a digraph with vertex set [m] and minimum in-degree and out-degree at least .99m.

For a permutation ρ of [m], let PDρ be its associated permutation digraph. Let

TΓ = {ρ : PDρ is a sub-graph of Γ}
SΓ = {ρ ∈ TΓ : ρ is cyclic}.

Let φ be a fixed even permutation of [m]. Let

RΓ = {ρ ∈ SΓ : φρ is cyclic}.

The permutations ρ thus correspond to a restricted class of Hamilton cycles in Γ.

In the next few sections we will prove that

Theorem 2. |RΓ| ≥ m!e−3m.
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This will help us resolve a strange technical problem, already met in [7]. It facilitates a second
moment calculation.

The proof is quite long and it is deferred to a later section, so as not to interrupt the flow of the
probabilistic part of the argument.

5 Second Moment Calculation

Let C1, C2, . . . , Ck be the cycles of Σ∗ produced by Phase 2, and let c∗i = minj cij where cij is
the number of clean edges in cycle Ci from fiber Fj to Fj+1 for j = 1, 2..., h. An edge is clean if
it is not incident with W . Recall that W is the set of vertices v for which Phase 2 exposed an
edge incident with v. E1 will denote the set of clean edges that do not join fibers Fi, Fi+1 for
some i.

The cycles are numbered so that c∗1 ≤ c∗2 ≤ ... ≤ c∗k and c∗1 ≥ n0/h − 2n3/4 ≥ 99h2n
log n . If k = 1

there is nothing more to do. Otherwise let a =
⌈

nh2

log n

⌉
. We will show that whp it is possible

to delete a set of edges from each Ci and then replace them so that the resulting structure is a
Hamilton cycle. We will use the second moment method to do this.

We select an odd number of edges from each Ci and delete them. The choice of parity is related
to the need to keep permutation φ (defined next) even. See (4). We will then be able to apply
Theorem 2. Continuing, when h is odd, we choose the edges in the following manner. For each
Ci, we select a set of li = 2b ci∗

a c+ 1 vertices v ∈ Ci \W from each fiber Fj , where j = 1, 2, ..., h,
and delete the corresponding edges (v, u) in Σ∗. The number of edges deleted from cycle Ci is
mi = lih, which is odd. Since v ∈ Ci \W , the deleted edge (v, u) ∈ Σ0 is an edge between fibers
Fj and Fj+1 for some j. The above procedure is not acceptable when h is even as we would end
up deleting an even number of edges from each cycle. We circumvent this problem by choosing
li − 1 vertices from fiber Fj where j ≡ i (mod h) and li from the rest of the fibers for cycle Ci.
This ensures that the number of edges deleted from cycle Ci is mi = lih− 1, which is odd.

Let m =
∑k

i=1 mi. In each cycle Ci choose a vertex xi which loses a cycle edge directed out
of it. Let v1 = x1 and then go round C1 defining v2, v3, . . . vm1 in order as the end points
of the path sections. Then let vm1+1 = x2 and so on. Now re-label the broken edges as
(vi, ui), i ∈ [m]. We thus have m path sections Pj ∈ P(uφ(j), vj) in Σ∗ for permutation φ where
φ(1) = m1, φ(2) = 1, . . . φ(m1) = 1, φ(m1 + 1) = m1 + m2, φ(m1 + 2) = m1 + 1 etc.. (Some path
sections could be just a single vertex).

Note that since φ is made up of cycles of odd length,

φ is an even permutation of [m]. (4)

The number of paths starting (ending) at any of the fibers is either bm
h c or bm

h c+ 1.

We will attempt to re-join these paths in a different order so that a Hamilton cycle is constructed.
Suppose that path section P starts in fiber Fξ(P ) and ends in fiber Fη(P ). Because we do not
wish to put back edges that we have just deleted: If P immediately precedes Q in some re-
ordering then we will have ξ(Q) 6= η(P ), η(P ) + 1. We write P → Q if this holds for P,Q.

Fix for now, a choice of P1, P2, . . . , Pm and let Γ be the digraph with vertex set [m] and a directed
edge (i, j) whenever Pi → Pj . We are interested in the number of hamilton cycles in Γ, that
satisfy a certain property. Each vertex of Γ has in-degree and out-degree at least m− 2bm

h c− 2.
By choosing h to be suitably large, we can assume that m− 2bm

h c − 2 ≥ .99m. Thus, Γ satisfies
the conditions of Theorem 2.
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Let Ω denote the set of ordered pairs of selections of edges for deletion and and cycle re-
arrangements ρ satisfying the condition that a path ending on fiber Fi is not joined to a path
starting on the same fiber or Fi+1 and such that λ = φρ is cyclic. ω ∈ Ω is a success if E1

contains the edges needed for the associated Hamilton cycle.

Let H stand for the union of the permutation digraph Σ∗ and E1. We finish our proof by proving

Lemma 4. Pr(H does not contain a Hamilton cycle) = o(1).

Proof.

Let X be the number of Hamilton cycles in H obtainable by deleting edges as above, re-arranging
the path sections generated by φ and if possible reconnecting all the sections using edges of E1.
We can think of this as the sum of indicator variables indexed by Ω. We will use the well-known
inequality

Pr(X > 0) ≥ E(X)2

E(X2)
. (5)

Probabilities in (5) are thus with respect to the space of E1 choices for edges incident with
vertices not in W .

Now the definition of li yields that

2nh− |W |h
a

− 2kh ≤ m ≤ 2nh

a
+ 2hk

and so
1.98
h

log n ≤ m ≤ 2.01
h

log n.

Also
k ≤ log n/100h3, li ≥ 199 and

c∗i
li
≥ a

2.02
, 1 ≤ i ≤ k.

Now fix a set of m paths and a permutation ω ∈ Ω. The probability that the edges exist for
a success is at least n−m. For having conditioned on the existence of a set of edges A, the
probability that edge (u, v) exists is 1/µ where µ ≤ n is the number of vertices in the fiber
containing v which are not incident with an A-edge whose other endpoint is in the same fiber
as u. Recall that up this point all we have done is to conditoin on certain edges being present.
The remaining edges form random partial matchings between the fibers. Furthermore, we have
only conditioned on the presence of O(n3/4) edges in total.
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Let θ = 1h is even and θij = θ × 1i≡j mod h.

E(X) =
∑
ω∈Ω

Pr(ω is a success)

≥
∑
ω∈Ω

n−m

≥ n−mm!e−3m
k∏

i=1

(
c∗i

li − θ

) h∏
j=1
j 6=i

(
c∗i
li

)

≥ n−mm!e−3m
k∏

i=1

(
c∗i
li

)h(
li
c∗i

)θ

after using Theorem 2

≥ e−3m
(m

en

)m k∏
i=1

(c∗i e
1−1/12li

l
1+(1/2li)
i

)li (
1− 2l2i /c∗i√

2π

)h(
li
c∗i

)θ

≥ e−3m
(m

en

)m k∏
i=1

( e

1.01

)lih
(

c∗i
li

)lih−θ

= e−3m

(
mea

(1.01)(2.02)en

)m

≥ e−3m(.9h)m

≥ nΩ(1). (6)

Let M,M ′ be two sets of selected edges which have been deleted in Σ∗ and whose path sections
have been rearranged into Hamilton cycles according to ρ, ρ′ respectively. Let N,N ′ be the
corresponding sets of edges which have been added to make the Hamilton cycles. What is the
interaction between these two Hamilton cycles?

Let s = |M ∩M ′| and t = |N ∩N ′|. Now t ≤ s since if (v, u) ∈ N ∩N ′ there must be a unique
(ṽ, u) ∈ M ∩M ′ which is the unique Σ∗-edge into u.

We claim that t = s > 0 implies t = s = m and (M,ρ) = (M ′, ρ′). (This is why we have restricted
our attention to ρ ∈ RΓ.) For the following argument recall that we delete edges (vi, ui), i ∈ [m]
and our path segments go from uφ(i) to vi and in our re-ordering, vi will be connected to
uφρ(i) = uλ(p). Suppose then that t = s > 0 and (vi, ui) ∈ M ∩M ′. Now the edge (vi, uλ(i)) ∈ N
and since t = s this edge must also be in N ′. But this implies that (vλ(i), uλ(i)) ∈ M ′ and hence
in M ∩M ′. Repeating the argument we see that (vλk(i), uλk(i)) ∈ M ∩M ′ for all k ≥ 0. But λ
is cyclic and so our claim follows.

We adopt the following notation. Let 〈s, t〉 denote |M ∩M ′| = s and |N ∩N ′| = t. So

E(X2) ≤ E(X) + (1 + O(m|W |/n))
∑
ω∈Ω

n−m
∑

ω′:N ′∩N=∅

n−m

+(1 + O(m|W |/n))
∑
ω∈Ω

n−m
m∑

s=2

s−1∑
t=1

∑
ω′:〈s,t〉

nt−m

= E(X) + (1 + o(1))(A1 + A0) say. (7)

Clearly

A1 ≤

(∑
ω∈Ω

n−m

)2

≤ E(X)2. (8)

9



For given M,M ′, ρ, how many ρ′ satisfy the condition 〈s, t〉? We bound it from above by (m−t)!
(consider fixing t edges of Λ′).
Thus

A0 ≤
∑
ω∈Ω

n−m
m∑

s=2

s−1∑
t=1

 ∑
σ11+···+σkh=s

k∏
i=1

h∏
j=1

(
li − θij

σij

)(
c∗i − li
li − σij

) (m− t)!nt−m

≤ E(X)2
m∑

s=2

s−1∑
t=1

(
s

t

) ∑
σ11+···+σkh=s

k∏
i=1

h∏
j=1

(
li−θij

σij

)(
c∗i−li
li−σij

)(c∗i
li

)
 (m− t)!e3m

m!
nt.

Now (
c∗i−li
li−σij

)(c∗i
li

) ≤

(
c∗i

li−σij

)(c∗i
li

) ≤ (1 + o(1))
(

li
c∗i

)σij

≤ (1 + o(1))
(

2.02
a

)σij

where the o(1) term is O((log n)3/n). Also

∑
σ11+···+σkh=s

k∏
i=1

h∏
j=1

(
li − θij

σij

)
=

(
m

s

)
.

Hence,

A0

E(X)2
≤ (1 + o(1))

m∑
s=2

s−1∑
t=1

(
s

t

)(
2.02
a

)s(
m

s

)
(m− t)!e3mnt

m!

≤ n.01
m∑

s=2

s−1∑
t=1

(
s

t

)(
2.02
a

)s
ms−tnt

s!
, using e3m ≤ n.005 for h large,

= n.01
m∑

s=2

(
2.02
a

)s
ms

s!

s−1∑
t=1

(
s

t

)( n

m

)t

≤ 2m

n.99

m∑
s=2

(
(2.02)n

a

)s 1
s!

≤ 2m

n.99

m∑
s=2

(
2.02 log n

h2

)s 1
s!

≤ 2m

n.99
n2.02/h2

= o(1). (9)

The lemma follows from (5) to (9). �

This completes the proof of Theorem 1.

6 Proof of Theorem 2

6.1 Lower bound for |TΓ|:

Lemma 5. |TΓ| ≥ m!e−5m/2.
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Proof Consider a bipartite graph B = (V1 ∪ V2, E) where V1, V2 are disjoint copies of [m].
The edge set E(B) = {(i, j) : (i, j) ∈ E(Γ)}. It follows from the above that the degree of
each vertex is at least δB = .99m. A perfect matching M in B gives rise to a member ρ of
TΓ where j = ρ(i) iff (i, j) ∈ M . For a matching M of Km,m, let ν(M) be the number of
edges of M which are also in B. Let Mk denote the set of perfect matchings of Km,m with
ν(M) = k, k = 0, 1, 2, ...,m. We first prove that if µk = |Mk|, k = 0, 1, ...,m and k ≥ .26m + 1,
then

µk+1

µk
≥ .23m(m− k)(

m
2

) ≥ .46(m− k)
m

. (10)

Consider the set X of ordered pairs (M1,M2) where M1 ∈ Mk and M2 ∈ Mk+1 and the
symmetric difference M1 ⊕M2 is an alternating cycle of length 4. Now each M ∈ Mk is in at
least

(m− k)(2(δB − 1)− (m− 1)− (m− k)) ≥ .23m(m− k)

such cycles.
Explanation: There are m − k choices for an edge e = (v, w) ∈ M \ E(B). Then there are
at least 2(δB − 1) − (m − 1) pairs of vertices (a, b) such that (a, b) ∈ M and (v, b) ∈ E(B),
(a,w) ∈ E(B) and at least 2(δB − 1)− (m− 1)− (m− k) pairs (a, b) ∈ M ∩E(B), in which case
M ′ = (M ∪ (a,w), (v, b)) \ ((v, w), (a, b)) is a member of Mk+1 and (M,M ′) ∈ X .
On the other hand, each M is in at most

(
m
2

)
pairs and (10) follows.

Now, if k ≤ .26m, then

µk+2

µk
≥ .35m(m− k)(

m
2

) ≥ .7(m− k)
m

≥ .7(m− k)(m− (k + 1))
m2

. (11)

Explanation: As in the previous case, there are m−k choices for an edge e = (v, w) ∈ M \E(B).
Then there are at least 2(δB − 1) − (m − 1) pairs of vertices (a, b) such that (a, b) ∈ M and
(v, b) ∈ E(B), (a,w) ∈ E(B) and at least 2(δB−1)−(m−1)−k ≥ .72m−1 pairs (a, b) ∈ M\E(B),
in which case M ′ = (M ∪ (a,w), (v, b)) \ ((v, w), (a, b)) is a member of Mk+2 and (M,M ′) ∈ X .
Now, every such pair of edges{(v, w), (a, b)} gets counted twice. Hence, the actual number of
pairs is at least .35m and (11) follows.

It follows that µm ≥ (.46)km−kk!µm−k for k ≥ 0 and so

m! = µ0 + µ1 + · · ·+ µm ≤ µm

m∑
k=0

mk

(.46)kk!
≤ µmem/.46.

�

6.2 Upper bound for |TΓ|/|SΓ|

We will now extend an approach of Dyer, Frieze, and Jerrum [10] to directed graphs.

Let k∗ = b7 ln mc, and for 1 ≤ k ≤ m/2, define g(k) = m7k!(7 lnm)−k and

f(k) =

{
g(k), if k ≤ k∗,
g(k∗), otherwise.

Lemma 6. Let f be the function defined above. Then

(a) f is nonincreasing and satisfies

11



f(k − 1) ≥ 7k−1f(k) lnm;

(b) f(k) ≥ 1, for all k.

Proof Observe that g is unimodal and that k∗ is the value of k minimizing g(k); it follows
that f is non-increasing. When k ≤ k∗, we have f(k − 1) = g(k − 1) = (7 lnm)k−1g(k) =
(7 ln m)k−1f(k). Otherwise, f(k − 1) = g(k∗) = f(k) ≥ (7 ln m)k−1f(k). In either case, the
inequality in part (a) of the lemma holds.

Part (b) of the lemma follows from the chain of inequalities.

1
f(k)

≤ 1
g(k∗)

=
(7 ln m)k∗

m7k∗!
≤ m−7

∞∑
k=0

(7 lnm)k

k!
= m−7 exp(7 lnm) = 1.

Lemma 7.
|SΓ| ≥ m−8|TΓ|.

Proof For 1 ≤ k ≤ bm/2c, let Φk be the set of all PD’s in Γ containing exactly k cycles,
and let Φ = ∪kΦk be the set of all PD’s. Define

Ψ = {(F, F ′) : F ∈ Φk, F ′ ∈ Φk−1andF ⊕ F ′ ∼= C0},

where ⊕ denotes symmetric difference and C0 is the directed graph on four vertices with two
vertices having in-degree two, out-degree zero and two vertices having out-degree two, in-degree
zero. Observe that if (F, F ′) ∈ Ψ then F ′ can be obtained from F by deleting two edges and
adding two edges and that this operation reduces the number of cycles by exactly one.

Our proof strategy is to define a positive weight function on the arc set Ψ such that the total
weight of arcs leaving each node (PD) F ∈ Φ \Φ1 is at least one greater than the total weight of
arcs entering F . This will imply that the total weight of arcs entering Φ1 is an upper bound on
the number of non-Hamiltonian PD’s in Γ, and that the maximum total weight of arcs entering
a single node in Φ1 ia an upper bound on the ratio |Φ \ Φ1|/|Φ1|.

The weight function w : Ψ → R+is defined as follows: For any arc (F, F ′) with F ′ ∈ Φk, if the
PD F ′ is obtained from F by coalescing two cycles of length γ1 and γ2 into a single cycle of
length γ1 + γ2, then w(F, F ) = (γ−1

1 + γ−1
2 )f(k).

Let F ∈ Φk be a PD with k > 1 cycles C1, C2, ..., Ck, of lengths γ1, γ2, ..., γk. Let us try to obtain
a lower bound on the weight of the arcs going out of F . Suppose we chose cycle Ci to be one of
the two cycles that coalesces with the other to form a new cycle. The number of ways to pick
an edge from Ci, is γi. Having picked an edge (u, v) from Ci, we need to find an edge (s, t) on
the remaining cycles such that (u, t) and (s, v) are edges in the digraph Γ. Since the out-degree
of u is at least .99m, we have at least .99m− (γi − 1) possible choices for s. Similarly, we have
at least .99m− (γi − 1) possible choices for t. The number of feasible edges (s, t) is

≥ .99m− (γi − 1) + .99m− (γi − 1)− (m− γi)
> .98m− γi

for each edge in Ci. The total number of ways to form a new cycle using Ci is thus at least
γi(.98m − γi). The weight of any arc leaving F is at least γ−1

i f(k − 1), which, by Lemma 2, is
bounded below by (7 lnm)(kγi)−1f(k). We also have to note that every pair (u, v), (s, t) may
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get counted twice, once from each cycle. Thus, the total weight of arcs leaving F is bounded as
follows:

∑
F+:(F,F+)∈Ψ

w(F, F+) ≥ 1
2

k∑
i=1

γi[.98m− γi]
(7 ln m)f(k)

kγi

=
1
2
m[.98k − 1]

(7 lnm)f(k)
k

≥ 3f(k)m lnm (12)

where we have used the fact that k ≥ 2.

We now give an upper bound to the weight of the arcs (F−, F ) ∈ Ψ entering F . Suppose once
again that F has cycles C1, C2, ..., Ck, of lengths γ1, γ2, ..., γk. A directed arc from F− to F
implies that one of the cycles of F was formed by coalescing two cycles of F−. Suppose Ci was
formed by coalescing two cycles from F−. By removing the added edges from Ci and putting
back the deleted edges, we can generate F−. Let a and b be the lengths of the corresponding
cycles in F−. Remove one of the added edges from Ci and go around the cycle and remove the
edge which is at a distance a. This way we make sure that the deletion of the first of the two
added edges uniquely determines the two paths of lengths a− 1 and b− 1. Since the added edge
in F could be any of the γi edges, we have at most γi choices.

The total weight of arcs entering F can thus be bounded above as follows:

∑
F−:(F−,F )∈Ψ

w(F−, F ) ≤
k∑

i=1

γif(k)
∑

a,b≥1
a+b=γi

(
1
a

+
1
b

)

=
k∑

i=1

γif(k)
γi−1∑
a=1

(
1
a

+
1

γi − a

)
≤ 2f(k)mH(m) (13)

where Hm =
∑m

i=1 i−1 ≤ lnm + 1 is the mth harmonic number. Combining inequalities (12)
and (13), we have

∑
F+:(F,F+)∈Ψ

w(F, F+)−
∑

F−:(F−,F )∈Ψ

w(F−, F ) ≥ 3f(k)m lnm− 2f(k)mH(m)

≥ f(k)m(lnm− 2)
≥ m(lnm− 2)

where the final inequality is by Lemma 6. Thus the total weight of arcs leaving F exceeds the
total weight of arcs entering by at least 1, provided m ≥ e3. The number of non-Hamiltonian
PD’s |Φ\Φ1| is bounded above by the total weight of arcs entering Φ1, which in turn is bounded
- see inequality (13) - by |Φ1| × 2f(1)mHm ≤ m8|Φ1|/2. �
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6.3 Lower Bound on |RΓ|:

In this section, we will use an argument similar in flavor to the argument of the previous section
to give a lower bound on |RΓ|. Each ρ ∈ SΓ yields another permutation λ = λ(ρ) = φρ. Recall
that φ is considered to be fixed and ρ ∈ RΓ iff λ = φρ is cyclic.

We show next that if ρ ∈ SΓ then λ has an odd number of cycles. Now φ is even and so λ and ρ
have the same sign, (−1)m−1. If λ has cycles C1, C2, . . . , Ck of sizes γ1, γ2, . . . , γk then the sign
of λ is (−1)γ1−1+···+γk−1 = (−1)m−k = (−1)m−1.

We let
k0 = 2b50001 lnmc+ 1

and we will consider the following conditions for ρ: (i) λ must have at least k0 cycles, (ii) the
longest cycle in λ has length at most ≤ .8m, and (iii) the sum of the lengths of the longest two
cycles is at most ≤ .92m.

The λ with less than k0 cycles will be considered later in the section. Given (i), it is not clear
whether or not we can find ρ satisfying conditions (ii) and (iii). Let Sk, k odd, be the set of all
ρ ∈ SΓ such that λ(ρ) has k ≥ k0 cycles. We define a partition Sk = Pk ∪Qk ∪ Rk. Let Pk be
the set of all ρ which do not satisfy condition (ii), Qk be the set of those which satisfy (ii) but
not (iii) and Rk be the set of those which satisfy both (ii) and (iii).

We will first show that a constant fraction satisfying condition (i) also satisfy conditions (ii) and
(iii).

6.3.1 |Pk|/|Qk ∪Rk| ≤ 1/60

We define Xk = {(ρ1, ρ2) : ρ1 ∈ Pk, ρ2 ∈ Qk∪Rk and Λ1⊕Λ2
∼= H0} where Λi = PDλ(ρi), i = 1, 2

and ⊕ stands for symmetric difference and H0 is the directed graph on six vertices as in Figure
1(c). The weight function w : Xk → R+ is defined as follows: If Λ2 is obtained by breaking and
patching two cycles of Λ1 of length γ1 and γ2 into two cycles of length γ′ and γ′′, the weight
w(ρ1, ρ2) = γ−1

1 + γ−1
2 . We restrict Xk to those (ρ1, ρ2) for which γ′, γ′′ ≥ m/4.

Suppose ρ1 ∈ Pk and C1, C2, ..., Ck are the cycles of Λ1 in increasing order of size. Let γt denote
the length of cycle Ct for t ∈ [k]. We will combine Ck with a smaller cycle C` , ` 6= k, to obtain
two cycles (as in Figure 1(b)) such that the new auxiliary graph constructed, say Λ2 = Λ(ρ2),
belongs to Qk ∪ Rk. The weight of (ρ1, ρ2) is γ−1

k + γ−1
` . While combining the two cycles, we

will have to ensure that ρ2 is a cyclic permutation.

To create ρ2 ∈ Qk ∪ Rk we delete edges (p, λ(p)), (q, λ(q)) and (r, λ(r)), from Λ1 where p, q, r
appear in this order on the Hamilton cycle Hρ1 of Γ, corresponding to ρ1, and replace them
with the edges (p, λ(q)), (q, λ(r)) and (r, λ(p)) as shown in Figure 2 to maintain Hamiltonicity.
Vertices q and r are chosen on cycle Ck and vertex p is chosen on C`, ` 6= k. We will of course have
to impose the restriction on p, q and r in this construction that (p, ρ(q)), (q, ρ(r)) and (r, ρ(p))
are all edges of Γ. There will be other restrictions necessary.

The number of choices for p is γ`. Given p we rule out at most m− γk choices for q due to not
being on Ck. Recall that Ck is the longest cycle of Λ1 and it corresponds to ρ1 ∈ Pk and so
γk ≥ .8m. This leaves us with at least .99m+ .8m−m = .79m choices. Having chosen q we rule
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out m/2 choices for r within distance ≤ m/4 from q on Ck. For each such choice, both of the
two new cycles replacing Ck, C` are of size ≥ m/4, placing ρ2 in Qk ∪Rk.

Some of these choices are inadmissable because we need to ensure that ρ2 is a cyclic permutation.
First we will restrict our choice of q to one of the first m/4 vertices following p on Hρ1 . We
have at least m/4− .21m ≥ .04m such choices. Now we must choose r from the remaining 3m/4
vertices. We have ruled out m/2 already and we rule out a further ≤ .02m choices of r for
which r is not an in-neighbour of λ(p) or λ(r) is not an out-neighbour of q. This yields at least
(.75 + .8− .5− 1− .02)m = .03m choices.

Thus ∑
ρ2:(ρ1,ρ2)∈Xk

w(ρ1, ρ2) ≥
k−1∑
`=1

γ`[(.04m)(.03m)](γ−1
k + γ−1

` )

≥ .0012
k−1∑
`=1

γ`m
2(m−1 + γ−1

` )

= .0012
k−1∑
`=1

[γ` + m]m

= .0012[m− γk + (k − 1)m]m

≥ .0012(k − 1)m2

≥ 120m2 lnm (14)

We now obtain an upper bound on the total weight of pairs containing ρ2 of Qk ∪Rk. Suppose
that C ′

1, C
′
2, . . . , C

′
k are the cycles of Λ2 in increasing order of length γ′1 ≤ γ′2 ≤ · · · ≤ γ′k. Our

choices for Λ1 are restricted as follows: We must choose two cycles C ′
r, C

′
s such that γ′r + γ′s =

γk + γ` ≥ γk ≥ .8m and γ′r, γ
′
s ≥ m/4. This implies {r, s} = {k − 1, k}. Given this, we see that

the total weight of edges entering Λ2 can be bounded as follows: The parameter a is the length
of the path from q to r on Ck.

∑
ρ1:(ρ1,ρ2)∈Xk

w(ρ1, ρ2) ≤ m2 max
M≤m


∑

a+b=M
a,b≥2

(
1
a

+
1
b

)
≤ m2

m∑
a=2

2
a

≤ 2m2 lnm (15)

It follows that

120m2|Pk| lnm ≤
∑

(ρ1,ρ2)∈Xk

w(ρ1, ρ2) ≤ 2m2|Qk ∪Rk| lnm (16)

We have thus shown that
|Pk| ≤ |Qk ∪Rk|/60. (17)

6.3.2 |Qk|/|Rk| ≤ 1/200

The argument that follows is similar to the one used above to show that |Qk ∪Rk| is a constant
fraction of |Sk|. Now let Yk = {(ρ1, ρ2) : ρ1 ∈ Qk, ρ2 ∈ Rk and Λ1 ⊕ Λ2

∼= H0} where H0 is
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the same directed graph on six vertices as in Figure 1(c). The weight function w : Yk → R+

is defined as follows: If Λ2 is obtained by breaking and patching two cycles of Λ1 of length γi

and γj into two cycles of length γ′ and γ′′, then w(ρ1, ρ2) = γ−1
i + γ−1

j . We again restrict our
attention to (ρ1, ρ2) such that γ′, γ′′ ≥ m/10.

Suppose ρ1 ∈ Qk and C1, C2, ..., Ck are the cycles of Λ1 in the order of increasing size γ1 ≤ γ2 ≤
· · · ≤ γk where γk ≤ .8m and γk + γk−1 > .92m. We will combine Ck with a smaller cycle
C` , ` /∈ {k, k − 1}, to obtain two cycles (as in Figure 1(b)) such that the new auxiliary graph
constructed, Λ2, belongs to Rk.

While q and r are chosen from cycle Ck, p is chosen from C`. The number of choices for p is
γ`. Since γk + γk−1 ≥ .92m, we have γk ≥ .46m. The number of feasible choices for q and r
is therefore at least .99m + .46m − m = .45m. Having chosen q we rule out .2m choices for r
within distance ≤ .1m from q on Ck. For each such choice, the size of the new largest cycle is at
most max{γk−1, γk + .08m − .1m} and both of the two new cycles replacing Ck, C` are of size
≥ .1m, placing Γ2 in Rk.

Some of these choices are inadmissable because we need to ensure that ρ2 is a cyclic permutation.
First we will restrict our choice of q so that q is one of the first .1m feasible Ck-vertices following
p on Hρ. Now we must choose r from the remaining ≥ .35m feasible Ck-vertices. We have ruled
out .2m already and we rule out a further ≤ .02m choices of r for which r is not an in-neighbour
of λ(p) or λ(r) is not an out-neighbour of q. This yields at least .13m choices.

Thus,

∑
ρ2:(ρ1,ρ2)∈Yk

w(ρ1, ρ2) ≥
k−2∑
`=1

γ`[(.1m)(.13m)](γ−1
k + γ−1

` )

≥ .013
k−2∑
`=1

γ`m
2(m−1 + γ−1

` )

= .013
k−2∑
`=1

[γ` + m]m

= .013[m− γk − γk−1 + (k − 2)m]m

≥ .013(k − 2)m2

≥ 1300m2 lnm. (18)

We now obtain an upper bound on the total weight of pairs containing a member ρ2 of Rk.
Suppose that C ′

1, C
′
2, . . . , C

′
k are the cycles of Λ2 in increasing order of length γ′1 ≤ γ′2 ≤ · · · ≤

γ′k. Our choices for Λ1 are restricted as follows: We must choose two cycles C ′
r, C

′
s such that

γ′r + γ′s = γk + γ` ≥ γk ≥ .46m and γ′r, γ
′
s ≥ .1m. This implies {r, s} ⊆ {k− 2, k− 1, k}. (Those

Λ2 that are paired with Λ1 have at most 3 cycles of size greater than .08m). Given this, we see
that

∑
ρ1:(ρ1,ρ2)∈Yk

w(ρ1, ρ2) ≤ 3m2 max
M≤m


∑

a+b=M
a,b≥2

(
1
a

+
1
b

)
≤ 3m2

m∑
a=2

2
a

≤ 6m2 lnm.
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It follows that
1300m2|Qk| lnm ≤

∑
(ρ1,ρ2)∈Yk

w(ρ1, ρ2) ≤ 6m2|Rk| lnm. (19)

From (17) and (19), we have
|Rk| ≥ 9|Sk|/10. (20)

6.4 Final Estimate

We can now complete our proof of Theorem 2. Fix k0 ≤ k ≤ bm/2c and let

Zk = {(ρ1, ρ2) : ρ1 ∈ Rk, ρ2 ∈ Sk−2, and ρ1 ⊕ ρ2
∼= H1},

where H1 is the graph shown in Figure 3(c) and Figure 4(c). Here we combine two cases. We
take 3 (see Figure 3) or 4 (see Figure 4) cycles from Λ1 and reduce this number by 2 to create
Λ2.

Let ρ1 ∈ Rk give rise to Λ1 that has cycles C1, C2, ..., Ck, of lengths γ1, γ2, ..., γk. For (ρ1, ρ2) ∈
Zk we will delete four edges from Λ1 and add in four new edges to obtain Λ2. If Λ2 is obtained
from Λ1 by breaking and patching cycles of length γ1, γ2, ..., γs, then w(Λ1,Λ2) = (γ−1

1 + γ−1
2 +

... + γ−1
s ). We will first obtain a lower bound on the total weight of pairs containing ρ1.

We choose cycles Ci and Cj from Λ1 and delete one edge from each, (p, λ(p)) and (q, λ(q)),
respectively. The remaining two edges to be deleted should lie outside the cycles, Ci and Cj .
Let the edges deleted from outside the cycles, Ci and Cj , be (r, λ(r)) and (s, λ(s)).

We will give a lower bound on the number of sets of four edges that can be deleted from the
auxiliary graph. Suppose (p, λ(p)) and (q, λ(q)) are chosen from Ci and Cj , respectively. The
number of choices for (p, λ(p)) and (q, λ(q)) are γi and γj , respectively. Now, we remove two
edges, (r, λ(r)) and (s, λ(s)), outside of cycles γi and γj such that edges of the form (x, λ(y)) and
edges of the form (y, λ(x)) are edges in Γ for x ∈ {p, q} and y ∈ {r, s}. The number of choices for
(r, λ(r)) such that (p, λ(r)) is an edge in Γ is at least .99m. The number of choices for (r, λ(r))
such that both (p, λ(r)) and (q, λ(r)) are edges of in Γ is at least .99m + .99m − m ≥ .98m.
By a similar argument, we have that the number of choices for (r, λ(r)) such that both (r, λ(p))
and (r, λ(q)) are edges of Γ is at least .98m. Thus the number of choices for (r, λ(r)) is at least
.98m + .98m − m ≥ .96m. Since (r, λ(r)) should lie outside of cycles Ci and Cj , the number
of choices for (r, λ(r)) is .96m − γi − γj . The same applies to (s, λ(s)). We also add the extra
condition that p, q, r, s lie in the order p, q, r, s or p, r, s, q on Hρ1 , (see Figure 5) thereby ensuring
that ρ2 is a cyclic permutation. The number of choices for r and s is at least

((.96m−γi−γj)/2
2

)
.

The number of choices for p, q, r, s is therefore at least

γiγj

(
(.96m− γi − γj)/2

2

)
≥ .0001γiγjm

2 (21)

We can pick the same set of four edges at most 12 times by picking one of the four edges to
be the first edge and one of the remaining three to be the second edge from a different cycle.
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The weight of (Λ1,Λ2) is at least γ−1
i + γ−1

j . Consequently, the weight of arcs emanating from
ρ1 ∈ Rk is

≥ m2

12000

k∑
i=1

∑
j 6=i

γiγj

(
1
γi

+
1
γj

)

=
m2

12000

k∑
i=1

∑
j 6=i

(γi + γj)

≥ (k − 1)m3

12000
> 8m3 lnm (22)

Now, we will give an upper bound on the total weight of pairs (Λ1,Λ2) ∈ Zk for a fixed Λ2 ∈ Sk.
Suppose Λ2 has cycles C1, C2, ..., Ck, of lengths γ1, γ2, ..., γk. Either one cycle of Λ2 was formed
by coalescing three cycles of Λ1 or two cycles of Λ2 were formed by coalescing four cycles of Λ1

into two.

Case 1: Suppose Ci ∈ Λ2 was formed by coalescing three cycles of lengths a, b and c from Λ1

with one edge deleted from the cycles of length a and b and two edges deleted from the cycle
of length c, as in Figure 3. There is a choice 1 ≤ d ≤ c − 1 for length of the first of the paths
created from the cycle of length c. Given a, b, c, d, there are γi choices for p say. Thus the total
weight of pairs containing a fixed Λ2 can be bounded from above in this case by

k∑
i=1

γi

∑
(a,b,c,d):a,b,c≥1

1≤d≤c−1
a+b+c=γi

(
1
a

+
1
b

+
1
c

)

≤ m
k∑

i=1

γi

∑
(a,b,c):a,b,c≥1

a+b+c=γi

(
1
a

+
1
b

+
1
c

)

≤ 3m
k∑

i=1

γ2
i (ln γi + 1)

≤ 4m3 lnm (23)

Case 2: Suppose Ci, Cj ∈ Λ2 were formed by combining four cycles of lengths a, b, c and d from
Λ1 with one edge deleted from each of the four cycles, as in Figure 4. The total weight of pairs
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containing a fixed Λ2 can be bounded from above in this case by

k∑
i=1

k∑
j=i+1

γiγj

∑
(a,c):a,c≥2

a+c=γi

∑
(b,d):b,d≥2

b+d=γj

(
1
a

+
1
c

+
1
b

+
1
d

)

=
1
2

k∑
i=1

∑
j 6=i

γiγj

γi−2∑
a=2

γj−2∑
b=2

(
1
a

+
1

γi − a
+

1
b

+
1

γj − b

)

≤ 1
2

k∑
i=1

∑
j 6=i

γiγj(2γj ln γi + 2γi ln γj)

≤ 1
2

k∑
i=1

4γim
2 lnm

= 2m3 lnm.

(24)

Combining inequalities (22), (23) and (24), we have that for k ≥ k0,

(6m3 lnm)|Sk−2| ≥ w(Zk) ≥ (8m3 lnm)|Rk|

and hence
|Sk−2| ≥ 4|Rk|/3 ≥ 6|Sk|/5

after using (20). It follows that ∑
k≥k0
k odd

|Sk| ≤ 6|Sk0−2|. (25)

Recall that all λ have an odd number of cycles.

We will now consider λ with at most 3 ≤ k ≤ k0 − 2 cycles. We will show that

|Sk−2|
|Sk|

≥ 1
m4

(26)

which implies
|Sk| ≤ m2(k−1)|S1|.

Hence,
|RΓ|
|SΓ|

=
|S1|∑

k≥1
k odd

|Sk|
= Ω(m−2k0).

Therefore we have

|RΓ| = e−o(m)|SΓ| ≥ e−o(m)|TΓ| ≥ m!e−(5/2+o(1))m.

It remains to prove (26).

Fix k ≤ k0 − 2 and let Pk, Qk and Rk partition Sk as before. Suppose Λ ∈ Sk has cycles
C1, C2, . . . , Ck in increasing order of size γ1, γ2, . . . , γk.

Suppose ρ ∈ Sk. Suppose (p, λ(p)) ∈ Ci and (q, λ(q)) ∈ Cj are deleted where i 6= j and
i, j ∈ {1, 2, ..., k − 1}. We delete two edges (r, λ(r)) and (s, λ(s)) from Ck such that the four
paths created can be patched into one cycle, reducing the number of cycles by two. We also
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ensure that the corresponding ρ′ is cyclic. If ρ ∈ Rk then γi + γj ≤ .92m. If ρ ∈ Pk ∪Qk then
γi + γj ≤ m − γk ≤ .54m. The binomial term in (21) is thus at least

(
(.96m−.92m)/2

2

)
> 0 and

this ensures that we have at least one pair of edges in γk that can be deleted. Thus there is at
least one way to transform ρ ∈ Sk into ρ′ ∈ Sk−2. Fix one way for each ρ ∈ Sk. Clearly, each ρ′

arises in at most m4 times in this way.

This verifies (26) and completes our proof of Thereom 2. �
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