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The power of .J1, + J24 can be obtained through direct calculations.

2
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=+ Z Z itk (28)
Similarly
0_2 N—1k—-N+V—-1 )
E{|]2"} = Wd: YD i 29
- k=0 =0

Due to the independence assumption on different paths, it is straight-
forward to check also that

E{Jigls,} = E{Ji Jog} = 0. (30)
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New Approaches for Chirplet Approximation

J. M. Greenberg, Zhisong Wang, and Jian Li

Abstract—This correspondence proposes efficient algorithms for ap-
proximating complex-valued and real-valued signals as a weighted sum
of multiple chirplet atoms, which are characterized by four parameters,
namely the scale, time, frequency, and chirp rate. Direct sequential esti-
mation of the parameters of multiple chirplets causes error propagations,
i.e., the estimated parameters of the initial chirplets significantly affect
the parameter estimation of the subsequent chirplets and may result in
large chirplet approximation errors. To deal with this problem, we further
exploit a relaxation (RELAX) method for recursive chirplet parameter
estimation. RELAX can be used in conjunction with time-domain or fre-
quency-domain algorithms to improve the parameter estimation accuracy
for multiple chirplets. Unlike previous methods, our chirplet approx-
imations require neither any a priori complete dictionary of chirplets
nor complicated multidimensional searches to obtain suitable choices
of chirplet parameters. The effectiveness of the proposed approaches is
demonstrated via a number of simulated examples.

Index Terms—Atomic decomposition, chirplets, matching pursuit, relax-
ation method, time-frequency analysis, Wigner—Ville distribution.

I. INTRODUCTION

In the last decade, a lot has been written about how to approximate
a given complex-valued signal

P(t) = a(t)exp(—jo(t)), a(t) > 0 ()]

by I chirplets; that is, how to find parameters C, € C, o, > 0, and
real-valued numbers ¢, wy, and ¢, so that

K—-1

a(t)exp(—jo(t)) ~ Z( Cr
k=0

7T0'k~)1/4

(t —1tx)

ci( )2
B E— )] )

The parameters need to be chosen so that the two functions appearing
in (2) are close in some prescribed sense. It should be noted that the
functions

(t —t1)*

20’/€

Xexp {— —J <Wk(t_tl.~)+

def 1
) - (TFU'L:)1/4
(t =)
20

gt =ty o, we, ck
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are typically referred to as chirplet atoms that are characterized by the
scale /o, time ty, frequency wj, and chirp rate ci, and satisfy

lgll* = {g.9)

Here, (-) denotes the complex conjugate.

Such four-parameter chirplet approximation offers more efficient
representations of the radar, seismic, and biological signals than the
representations obtained using short time Fourier transform, Gabor
transform, wavelet transform, and wavelet packets. A sampling of the
literature on this subject may be found in [1]-[6] and the references
contained therein. Applications of chirplet approximation include
time-frequency analysis, feature extraction, data compression, and
denoising. The central problem in establishing a formula like (2) is
the development of an efficient method for obtaining the parameters
(Cry0ksti,wr,ycr). The “matching-pursuit” and “ridge-pursuit”
algorithms have been used by a number of authors (for details, see
[2], [4], and [5]). They may be slow since they require complicated
multidimensional searches to obtain chirplet parameter estimates.
They also demand an a priori complete dictionary of chirplets. In
this correspondence, we present new methods for obtaining chirplet
approximations for both complex-valued signals and real-valued
signals. For a complex-valued signal a(¢)exp(—jo(t)), we propose
two time-domain algorithms to deal with functions of the form
a(t)exp(—jor(t)) by using local information about a (¢) and ¢y ()
in a neighborhood of a point £, which is the location of a global max-
imum of a (t). Similarly, we can apply a frequency-domain algorithm
to deal with the Fourier transform of the complex-valued signal by
using local information in the frequency domain. To save space, this
frequency-domain algorithm is not presented in the correspondence.
For a real-valued time-domain signal, we can decompose it into
chirplets based on its analytic signal using a time-domain algorithm or
based on its Fourier transform using a frequency-domain algorithm.
Unlike previously proposed methods, our chirplet approximations do
not require any a priori complete dictionary of chirplets, and we do
not have to apply complicated multidimensional searches to obtain
suitable choices of chirplet parameters.

“

g(t =ty 0k, wi, ek )G(t — th; Ok, wi, cp )dt = 1.

II. CHIRPLET APPROXIMATION FOR COMPLEX-VALUED SIGNALS

For k = 0, we let the zeroth-order residual R(t) be the original
signal; i.e.,

Ro(t) = a(t)exp(=jo(1)). a(t) > 0 5)

and for any integer £ > 0 we assume that the kth residual has the form

Ry (1) = ar(t)exp(—jor(t)), (6)

where ay(t) > 0 is the amplitude of the residual and ¢ (t) is the real-
valued phase. We let ¢;. be the location of a global maximum of ay (%)
(what we have in mind is that a, (¢) has a finite number of local maxima
and that the global maximum may be found by a simple search) and we
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assume that this maximum is nondegenerate; i.e., that u( 2 (ty) < 0.
Here, (- )("’) denotes the mth-order derivative. In this situation, we let

o k) ak(fk) , Ok =0k (tr), wr =

()(
ol (t)|

tx), and ¢ = ¢’§c2)(tk) D

and define the (k + 1)th residual by

Ria (1)
=Ry (t) — (o) ak(tr)exp(—jor)g(t — tri ok wr.cr). (8)
Taylor’s Theorem implies that for ¢ near to tx, Riyi1(t) =
O ((t — t)*) and thus if we write R 1(t) as
Rip1(t) = apqa(t)exp(—jorr1(t)) 9

the global maximum of @41 (t) is unlikely to occur near ¢ but if it
does, we are guaranteed that the (k + 1)th residual is uniformly small.
One could easily envision using a greedy version of the above algorithm
where, instead of using only the global maximum at the kth stage, one
also uses some or all of the local maxima of @, (), namely, the numbers
teg < tro <0 < TNk

An alternative algorithm is to choose the parameters (tx, wy, cx) as
we did in (7) but to instead write the (& + 1)th residual as

Riy1(t) = Ri(t) — ( - Ri(s)g(s — tkgak,wk,ck)(ls)

g (t_tkvo-kvwk~pk) (10)
where o, > 0 is chosen to maximize
pi(or) = ‘/ Ri(5)g (s — tgs Op,wi,cx)ds (11)

We note that if the original signal F'(t) = Ry(t)isin L1N Ly, where L,
denotes a space composed of the measureable functions f(¢) for which

o 1/p
(Jz1rrar)
residuals Ry (¢). This guarantees that the numbers py (o) defined in
(11) satisfy two properties. First, when o, goes towards 07, iy, (0) is
asymptotic to 2'/?(ma )/ *a (t1 ). Second, when o goes towards oo,
ft(c1.) is less than or equal to [*_ax(s)ds/(mwor)'/*. This follows
from (after substituting (3) and (6) into (11))

] ds

pr(or) < /jo ag(s ) 1/4 |:_

< 9l/2 Tro'k.)l/4

e 1 (s —t)?
/7 ag( (2 Jk)l/z(\xp{— 20: }ds’ (12)

< o0, then the same will be true of each of the

(5 - fk)z
201

and

XP [—M} ds = 1.

20

o 1
| e 0
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Thus, there is a point o < oo such that py (o) attains its global
maximum. With this alternative algorithm, we choose o, = },. We no
longer have the pointwise estimate Ry (t) = O ((t — )3) but we
do have

| Rrs1lls = |Rell? — pi(on). (14)

Thus, our alternative algorithm is norm reducing in Lo with p, (o) as
large as possible.

Our algorithms are different from the “matching-pursuit” type algo-
rithms [2], [4]. There, one attempts to pick parameters tx, o4, wi, and
¢y so that

F(tk,Uk,y,’k,Ck) déf |<Rk(t)g(t - tkao—kvwkwck)n

‘/ Rk(t)y(t—tk,ak,wk,ck)dt

15)

is a maximum. Typically, this involves a complicated four-dimensional
search procedure. Once the parameters (¢, ok, wk, ¢k ) have been de-
termined, the (k + 1)th residual is defined by

Rpq1 ()= Ry (t)—(Ri(t),g(t — th, oh, Wi, ck)) g(t—th, 0k, Wky k)
(16)

and the residual satisfies

1 Reialls = 1Rx I3 — [(Ri(t), g(t — tr, o5, wr, ). (17)

III. CHIRPLET APPROXIMATION FOR REAL-VALUED SIGNALS

In Section II, we dealt with chirplet approximations for a complex-
valued signal, while in this section, we focus on chirplet approximation
for a real-valued signal f(#), whose Fourier transform

for e [ i exp (—jwt)f(1)dt (18)
satisfies
flw) = f(-w). (19)
The identity in (19) guarantees that if we write f(w) as
f(w) = Ao(w)exp (—jtbo(w)) (20)

where Ag(w) > 0 is the amplitude of the transform and o (w) is its
real-valued phase, then

0 < Ap(w) = Ag(—w) and Yo (—w) = =g (w). 21
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The symmetry of Ao (w) guarantees thatif wo > 0 is a global maximum
of Ag(w), then so is —wo. We will use both of these points next. We
define the first residual Ry (w) by

Ri(w) = F(w) - Do)
(fo_oooho(w)ho(w)dw)
with
D I Ag(w)exp(—jtho(w) o (w)dw o)
0 =
(ffl ho (W)E(:u)dw)l/ ’
and

—(w = wo)?

1
ho(w) = (mag) /4 <GXP<

2(}'0
i (ool = o)+ 0 = wo)?) )

— w 2
+ exp <—(w + 0)

2

+3J (u")o — to(w + wo)

+g_°<w+wo>2)>)

(24)

where wy > 0 is the location of the positive global maximum of A (w),
the parameters (¢, to, r0) are given by

(1)

Yo = 1/’)0(&)0), to = 2/)0 (2)

(wo), and Ko = Vg (25)

(wo)

and a is chosen to maximize | Do].

The fact that Aq(w) and ¥o(w) satisfy (21) along with the identity
that ho(w) = ho(—w) guarantees that Dy is real, that 2, (w) satisfies
Ri(w) = Ri(—w), and that R (w) may be written as

Ri(w) = Ay (w)exp(—ju1(w)) (26)

where A; (w) and ¥ (w) satisfy (21). The residual R; (w) also satisfies

/ T A () = @7

/ Ap(w)dw — DE.

One now proceeds inductively in going from the kth residual

to the (k + 1)th. The key fact is that the kth residual R;(w) =

Ag(w)exp (—jipi(w)) satisfies Rg(w) = Ry(—w). This guarantees
that

0< Ap(w) = Ap(—w) and Y (—w) = =Y (w) (28)
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Fig. 1. Root mean-square errors (RMSEs) of ¢, wy, ¢1, and o as functions of the noise standard deviation. The signal consists of one chirplet and additive
complex Gaussian noise. (a) RMSE of ;. (b) RMSE of w;. (c) RMSE of ¢;. (d) RMSE of 7.

and thus implies that if w, > 0 is the location of a global maximum
of Ay (w) then so is —wy. One then repeats (22)—(23) with the index
0 replaced by % and arrives at the formula for the (¥ + 1)th residual.
One also has (27) with the index O replaced by &k and 1 by & + 1. The
identity that (k 4 1)th residual in the time domain is given by

def 1 i
Ry (t) = E/

—oo

exp (jwt) Rit1 (w)dw

3 o - .
= f(t) - QL D, I exp (jwt)hy( ):;/2
T (fjooo hp(s)ﬁp(fy’)ds)

p=0

(29)

and the identity (30), shown at the bottom of the next page, yields the
chirplet expansion for the real-valued signal f(¢).

In addition to using the above frequency-domain algorithm for
chirplet approximation, we can employ the time-domain algorithm

in Section II, provided that the real-valued signal is properly pre-
processed. Specifically, in the preprocessing stage, we compute the
complex-valued analytic signal of the real-valued signal based on
the Hilbert transform. We then apply the time-domain algorithm and
decompose the analytic signal into several chirplets. The sum of these
chirplets and their complex conjugates constitute the approximation
of the original real-valued signal.

IV. RECURSIVE CHIRPLET PARAMETER ESTIMATION

We can implement the algorithms in the previous sections for
chirplet approximation in a direct sequential way. After the parameters
of the first chirplet are estimated, the first chirplet is reconstructed and
subtracted out from the original signal. Based on the remaining signal,
the parameters of the second chirplet are estimated. Then, the second
chirplet is reconstructed and subtracted out from the remaining signal.
This process goes on until all the parameters of the existing chirplets
have been estimated.
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The problem with direct sequential estimation is that the estimation
errors of the initial chirplets may significantly affect the estimation
accuracy of the subsequent chirplets. To reduce such an error propa-
gation effect, we consider recursive chirplet parameter estimation by
exploiting a relaxation (RELAX)-based algorithm, which was origi-
nally proposed for estimating sinusoidal parameters in the presence of
noise [7] and later was used for angle and waveform estimation [8]. The
RELAX algorithm can be used in conjunction with either the time-do-
main algorithm or the frequency-domain algorithm to refine the chirplet
parameter estimates.

We use the time-domain algorithm as an example to illustrate the
steps of RELAX. Let I{' denote the number of chirplets we wish to
estimate in the signal.

Define

K—-1
Vi(t) = Ro(t) — Y Cuglt — 160,00, 84) 31
1=0,i#k

where {fi, @i, iy Gy, ¢, }{‘;31 are the estimated chirplet parameters.
The RELAX algorithm consists of the following steps.

Assume K = 1. Obtain to, &, é0, 60 and C’o from
Ro(t).

Assume K = 2. Compute Y; (t) with (31) by using %o,
o, €o, 00, and C, obtained in Step 1. Obtain t1, &1,
¢1, 61, and Cy from Y (t). Next, compute Y5 (¢) with
(31) by using tl,.ul,cl,cn,and €| and redetermine 7o,
@o, ¢o, 09, and C’o from Yj (t). Iterate the previous two
substeps until “practical convergence” is achieved (to be
discussed later on).

Assume K 3. Compute Y2(¢) with (31) by using
{ti, @i e &i,0is C }._, obtained in Step 2. Obtain ts, &z,
éa, 6o and Cs from Ya(t). Next, compute Yo () with
(31) by using {1‘“ @i, iy Oy é; }Z 1 and redetermine tg,
&0, fo, 60, and Co from Yo (t). Then, compute Y7 (¥)
with (31) by using {t:,¢ @i, 6,64, Ci }i=o,2 and redeter-
mine 1, &1, é1, 61 and ¢y from Y3 (t). Iterate the pre-
vious three substeps until “practical convergence.”
Continue similarly until K is equal to the desired or
estimated number of chirplets.

Step 1:

Step 2:

Step 3:

Remaining
Steps:

The “practical convergence” in the iterations of the RELAX algo-
rithm may be determined by checking if the relative changes of the pa-
rameter estimates are sufficiently small or if a preset maximum number
of iterations is reached.
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Fig. 2. Residue mean as a function of the noise standard deviation. The signal
consists of one chirplet and additive complex Gaussian noise.

V. NUMERICAL EXAMPLES

We provide several simulated examples to demonstrate the effec-
tiveness of the chirplet approximation algorithms. In all of the exam-
ples considered below, we assume that the signal is a discrete time se-
quence of N = 128 samples composed of several chirplets and ad-
ditive zero-mean circularly symmetric complex Gaussian noise. Ac-
cordingly, we use difference and summation operations instead of dif-
ferentiation and integration operations, respectively, in the algorithms.
For complex-valued signals, we have proposed two time-domain algo-
rithms. The first one is faster than the second one since it does not re-
quire a one-dimensional search for ;. However, numerical examples
show that in the presence of noise or multiple chirplets, the estimates
of {0} obtained via the first algorithm are not as accurate as those ob-
tained via the second. In the examples below, whenever we deal with
chirplet approximation for complex-valued signals in the time domain,
the second algorithm is used. We define the residue at the kth stage as
the Euclidean norm of the remaining signal after k chirplets are recon-
structed and subtracted out from the original signal.

A. Example 1

In the first example, we consider a signal consisting of one chirplet
and additive complex Gaussian noise. The chirplet has the following
parameters: Cy exp(—j¢1) = 1, = 54, w1 = 40x/N,c1 = 27 /N,

/ exp(jwt)hp(w)dw
—ap(t—tp)?
2(1+rZa2)

+J <(UP —wplp) —wp(t = tp) —

rcpozf)(t—tp)

2(1+rZaZ) >)

exp (
=2*?(na,)"/*Re

(1 — jrpa,)t/? (0)
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Fig. 3. Comparison of our method and O’Neill and Flandrin’s method in terms
of (a) residue and (b) computational time. The signal consists of one chirplet
and additive complex Gaussian noise.

and 01 = 4. We examine the effect of the noise standard deviation
on the chirplet parameter estimates obtained from 100 Monte Carlo
simulations. In Fig. 1(a)—(d), the root mean-square errors (RMSEs) of
the chirplet parameters #1, w1, ¢1, and o are shown. The logarithm
scale is not used in the y axis for Fig. 1(a) and (d) due to the fact that
zero-valued RMSEs occur when the noise standard deviation is very
small. As expected, the larger the noise standard deviation, the worse
the parameter estimates. Fig. 2 shows the residue mean E [R(#)] as
a function of the noise standard deviation after the estimated chirplet
time sequence is subtracted out from the signal, where E[-] denotes the
expectation operator. Comparing Figs. 1 and 2, we see that the residue
mean changes with respect to the noise standard deviation in a similar
way as the RMSEs of the chirplet parameters. Hence, it can be used
as a performance measure of the chirplet approximation. In Fig. 3, we
compare the residue and computational time obtained via our method
and O’Neill and Flandrin’s method [3] for each of the above 100 Monte
Carlo simulations when the noise standard deviation is equal to 107>,
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Fig. 4. Comparison of the residue means as functions of the second chirplet pa-
rameter ¢5. The signal consists of two chirplets and additive complex Gaussian
noise.

TABLE I
PARAMETERS OF THE THREE CHIRPLETS IN THE THIRD EXAMPLE

k| Crexp(=jor) | tk | wk ek | o
1 [ exp(—i%F 64]0.2r [ 5 [10
2 [ exp(—j%) 54 [0.1r [ 2 [ 10
3 | exp(—jRF 7410057 | & |14

—e— Using RELAX
- Not using RELAX

T T T

T

-2 I | I
0 0.5 1 1.5 2
Number of the estimated chirplets

10
2.5 3

Fig. 5. Comparison of the residues as functions of the number of the estimated
chirplets. The signal consists of three chirplets and additive complex Gaussian
noise.

Neither method requires a priori complete dictionary of chirplets. The
computational time measured in Matlab can indicate roughly the com-
putational complexity of the chirplet decomposition. We see that our
method not only requires less time than O’Neill and Flandrin’s method
but also has smaller residue than O’Neill and Flandrin’s method.
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TABLE II
PARAMETER ESTIMATION ERRORS OF THE THREE CHIRPLETS IN THE
THIRD EXAMPLE

Not using RELAX

W Ck Ok
0.0042 | 0.0007 | 1.1900
0 | 0.0187 | 0.0356 | 2.5000
0 | 0.0051 | 0.0123 | 0.8400

Using RELAX
Ck

0.0005
0.0031
0.0001

Tk

0.1700
0.0100
0.2300

tr | wi
0.0023
0.0012

0.0015

W N = 3
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Fig. 6. (a) Wigner—Ville distribution of the real-valued signal, and (b) the sum
of the Wigner—Ville distributions of the estimated pair of complex conjugate
chirplets. Chirplet approximation is done in the frequency domain.

B. Example 2

We consider in the second example a signal consisting of two
chirplets and additive complex Gaussian noise. The first chirplet has
the following parameters: Cy exp(—j¢1) = exp(—jd7/N), t1 = 54,
w1 = 0.2w, ¢c1 = 37/N, and 1 = 3. The second chirplet has the
same parameters as the first one except for ¢». In Fig. 4, we compare
the residue means obtained via two methods as functions of t> obtained
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Fig. 7. (a) Wigner—Ville distribution of the analytic signal, and (b) the sum

of the Wigner—Ville distributions of the estimated pair of complex conjugate
chirplets. Chirplet approximation is done in the time domain.

via 100 Monte Carlo simulations with the noise standard deviation
equal to 10™*. For the first method, we estimate the parameters of
one chirplet first, subtract it out from the signal, and then estimate
the parameters of the second chirplet. For the second method, we
apply the RELAX based recursive algorithm by using cyclic chirplet
approximation iterations to refine the parameter estimates. Fig. 4
demonstrates that RELAX can help reduce the residue significantly
and hence improve the accuracy of the parameter estimates.

C. Example 3

In the third example, we consider a signal consisting of three
chirplets and additive complex Gaussian noise. The parameters of the
three chirplets are shown in Table I. The noise standard deviation is
equal to 107> and we only use one realization of it. In Fig. 5, we
compare the residues of these two methods as functions of the number
of the estimated chirplets. The absolute values of the parameter
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estimation errors of the two methods are listed in Table II. It is worth
noting that RELAX can contribute to smaller residues and more
accurate parameter estimates.

D. Example 4

Finally, we consider in the fourth example a real-valued signal,
which is obtained by taking the real part of one realization of the
signal in the first example with the noise standard deviation equal to
10™". Fig. 6(a) shows the Wigner—Ville distribution of the real-valued
signal. The artifacts near the zero frequency is due to the cross-term
interferences of the Wigner—Ville distribution. To determine the
parameters of the real-valued signal, we can explore two options. One
way is to first use discrete Fourier transform (DFT) to transform the
signal into the frequency domain and then use the frequency-domain
chirplet approximation algorithm. Note that a pair of complex conju-
gate chirplet should be used as the bases. An alternative way for the
chirplet approximation of the real-valued signal is to first compute its
complex-valued analytic signal based on the Hilbert transform. Then,
we can apply the time-domain chirplet approximation algorithm to
the analytic signal to determine the corresponding chirplet. After that
its complex conjugate counterpart can be obtained easily. Fig. 6(b)
shows the sum of the Wigner—Ville distributions of the reconstructed
pair of chirplets obtained via the first method. Fig. 7(a) shows the
Wigner—Ville distribution of the analytic signal. Fig. 7(b) shows the
sum of the Wigner—Ville distributions of the reconstructed pair of
chirplets obtained via the second method. Note from Figs. 7(b) and
6(b) that the time-frequency distribution of the real-valued signal
is readily observable and the artifacts near the zero frequency are
eliminated. This demonstrates that both approaches can be used to
estimate the chirplet parameters for a real-valued signal.

VI. CONCLUSION

‘We have presented several time- and frequency-domain algorithms
for efficient chirplet approximation of complex-valued and real-valued
signals. We have also shown how a recursive relaxation (RELAX)
based procedure can be used in conjunction with either the time-
domain algorithm or the frequency-domain algorithm to improve the
parameter estimation accuracy for multiple chirplets. Unlike previous
methods, our chirplet approximations do not require any a priori
complete dictionary of chirplets and complicated multidimensional
searches to obtain suitable choices of chirplet parameters. Simu-
lation results have demonstrated the effectiveness of the proposed
approaches.
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