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1. Introduction

1.1. These lectures are intended to serve as a rough introduction to a va-
riety of mathematical problems aimed at understanding dynamic behavior
in certain complex nonlinear physical systems, systems described by an
evolution equation

∂tu = A(u), (1)

where u(t) is the state of the system at time t, with u(t) ∈ X, a high-
dimensional state space. In general, one may think of problems to do with
statistical mechanics (dimX ∼ 1024), fluid turbulence, polycrystalline grain
structure of typical metals, etc. There are many ways to approach the ques-
tion of dynamics in such systems—experimental, computational, statistical,
etc. We focus on the role of mathematical analysis, whose appropriate uses
include: identifying general principles for dynamic behavior; detailed study
of prototypical examples and critical cases; developing and justifying pro-
cedures to reduce complex systems to simpler ones (of lower dimension,
perhaps); and identifying and studying significant structure (Hamiltonian
dynamics, gradient flow, thermodynamic compatibility).

From the physical point of view, our particular focus is on models of
kinetic behavior for systems whose spatial structure develops a pattern of
domains or clusters that coarsen as time increases, in ways that seem to
be statistically self-similar. This kind of behavior is seen, for example, in
foams (bubble bath), grain structure in alloys, and many agglomeration
and clustering processes. Although many of these systems are subject to
the second law of thermodynamics—entropy increases (or at constant tem-
perature, free energy decreases)—they do not reach equilibrium on the time
scales of interest, and so it is an interesting problem to understand the reg-
ularities observed. If there is one universal theme of these lectures, it is that
ultimately the universe may be doomed to heat death, but the path it takes
along the way could be interesting nevertheless.

From the mathematical point of view, the emphasis is on studying dy-
namical phenomena peculiar to infinite-dimensional, spatially extended sys-
tems, such as weak convergence and self-similarity (dynamic scaling behav-
ior). In infinite dimensions, the choice of an appropriate topology becomes
nontrivial, and sometimes depends upon both mathematical and physical
considerations.

Note. These lecture notes grew from tutorial lectures given in January
2005 in conjunction with the program on Nanoscale Material Interfaces
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held at the Institute for Mathematical Sciences, University of Singapore,
and were delivered in a course of lectures given at Humboldt University
in Berlin in summer 2005. The notes were prepared with the assistance
of Apostolos Damialis, Simone Hock, and Dirk Peschka. The lectures were
developed for an audience including graduate and advanced undergraduate
students; therefore a minimum of background in PDE theory is assumed,
and the derivation of models and discussion of PDE results is largely done
in a heuristic way. But a number of new rigorous results for models of the
dynamics of domain size distributions are presented. Gradient structure
turns out to play a surprisingly interesting and significant role throughout.

1.2. First models of domain formation and an open problem.

(i) A scalar ODE ∂tu = −f(u) with f : R→ R C1 always gives a gradient
flow: ∂tu = −W ′(u) where W (u) =

∫
f(u) du. Every solution t 7→ u(t) is

monotonic, and every bounded solution converges as t→∞.

(ii) We introduce spatial variation, considering solutions of

∂tu(x, t) = −f(u(x, t)), x ∈ Ω = [0, 1], t ≥ 0. (2)

What happens as t → ∞ is simple enough to describe: For any bounded
solution, u∞(x) = limt→∞ u(x, t) exists for every x, with f(u∞(x)) = 0
for all x. If f has multiple stable zeros (for example, f(u) = u3 − u), the
limiting state u∞ is typically non-constant—domains will form in Ω as time
proceeds, corresponding to different limiting values of u∞(x).

Even for this simple equation, it is problematic to choose an appropriate
space and topology for studying these infinite-dimensional dynamics. For
state space we could try X = C(Ω) with norm ‖u‖X = supx |u(x)|. This
is fine for proving local solvability of the initial value problem, but is a
poor choice for studying long-time behavior. The pointwise limit u∞ may
be discontinuous, thus not in X. One can achieve u∞ ∈ X by taking X =
B(Ω), the space of bounded functions on Ω with the sup norm. But then
it is false in general that ‖u(·, t) − u∞‖X → 0 as t gets large. One has∫
Ω
|u(·, t)−u∞|p → 0 for any finite p ≥ 1, which suggests takingX = Lp(Ω).

But this is not wonderful either—the Nemytskii operator f : Lp(Ω) →
Lp(Ω) is not usually C1, and local solvability for all initial data may require
restrictive hypotheses on f (globally Lipschitz, say).

(iii) A small change in the problem leads us quickly to the realm of the
unknown. We alter the previous model by introducing a scalar “mean-field”
coupling parameter θ(t), determined by imposing the global constraint that
total “mass”

∫
Ω
u(x, t) dx should remain conserved in time. Thus we con-
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sider

∂tu(x, t) = −f(u(x, t)) + θ(t), x ∈ Ω = [0, 1], t ≥ 0.

Mass conservation formally implies θ(t) =
∫
Ω
f(u(x, t)) dx. Assuming f :

R→ R is C1, the map u 7→
∫
Ω
f(u) is C1 on the state space X = B(Ω), and

Picard iteration gives us local-in-time solvability for initial-value problems

∂tu = −f(u) +
∫

Ω

f(u), u(t0) = u0 ∈ X.

One can rather easily prove global existence forward in time for bounded
solutions under the mild hypothesis that

lim inf
z→−∞

f(z) < f(s) < lim sup
z→+∞

f(z) for every s ∈ R.

This leads us directly to the following innocent-sounding

Open question: Under only these mild hypotheses on f , must
every bounded solution converge (pointwise a.e.) as t→∞?

Various partial results are known from studying related PDEs from vis-
coelasticity [4] and anomalous diffusion [43]. But an answer to the general
question remains elusive. Tantalizing is the fact that “free energy” is de-
creasing:

d

dt

∫
Ω

W (u) =
∫

Ω

W ′(u)(∂tu) =
∫

Ω

(
f(u)−

∫
Ω

f(u)
)
∂tu = −

∫
Ω

(∂tu)2,

thus ∫
Ω

W (u(t)) +
∫ t

t0

∫
Ω

(∂tu)2 =
∫

Ω

W (u(t0)).

Then it follows that as t increases,
∫
Ω
W (u(t)) decreases and has a limit,

and one can show
∫
Ω
(∂tu)2 is Lipschitz in t and tends to zero as t → ∞.

This rules out many types of recurrent dynamics such as asymptotically
periodic behavior, but ever-slower drift remains a mathematical possi-
bility. The main difficulty appears to be that it is not known whether
limt→∞

∫
Ω
f(u(x, t)) dx must exist.

In [47] it is proved that if the initial data u0 has finite range, then indeed
limt→∞ u(x, t) exists for all x ∈ Ω. In this case, the problem reduces to one
for a finite-dimensional ODE system for the unknown ~u(t) = (uj(t)) ∈ RN ,
where

uj(t) = u(x, t) for x ∈ Aj ⊂ Ω, ∪N
j=1 Aj = Ω.
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The proof exploits this finite-dimensionality in an essential way. The main
ideas go as follows (see [47] for details): The ω-limit set of the solution
trajectory,

ω(~u) = ∩t0>0{~u(t)|t ≥ t0} = {~v ∈ RN : ∃tn →∞, ~u(tn)→ ~v},

is a connected, compact set. By Sard’s theorem, f has an open, dense set
of regular values. If ω(~u) is not a single point, then one can show that
it contains a hyperbolic curve of equilibria. Using a theorem of Hale and
Massat [25] related to center manifold theory, it follows that ω(~u) must
contain a non-equilibrium point. But for this system, ω(~u) contains only
equilibria, giving a contradiction.

2. A hierarchy of domain coarsening models in one space
dimension

2.1. Domain walls in the Allen-Cahn equation

In a variety of physical processes, domains that form in multi-stable sys-
tems slowly change in time, with the overall pattern becoming coarser. Im-
portant examples in materials science include the growth of single-crystal
grains in polycrystalline materials, phase separation in alloys, and anti-
phase boundary motion in antiferromagentic materials. One of the simplest
mathematical models of this behavior arises as a modification of (2) above.
Namely we consider the Allen-Cahn equation (or scalar Ginzburg-Landau
equation)

∂tu(x, t) = −f(u) + ε2∂2
xu, 0 < x < 1, t > 0. (3)

The term ε2∂2
xu can arise from diffusion, or through continuum modeling

of nearest-neighbor coupling effects in atomic lattices, for example [3]. We
have in mind that ε could be quite small, representing a ratio of microscopic
to macroscopic length scales, for example. We fix attention on the bi-stable
nonlinearity

f(u) = W ′(u), where W (u) =
1
8
(u− 1)2(u+ 1)2, (4)

and for convenience impose the Neumann boundary conditions

∂xu = 0 at x = 0 and 1, t > 0. (5)

Our aim in this section is to describe the process of domain wall forma-
tion that occurs for this system, and how coarsening by domain wall motion
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and annihilation can be described via a hierarchy of models at varying lev-
els of description, leading to a universal kind of statistical behavior on very
large scales.

From the PDE-theoretic point of view it is convenient to take the state
space X as the Sobolev space H1([0, 1]) of functions on [0, 1] with square-
integrable first derivatives, but for these notes, we ignore PDE technical-
ities. For the most part, one may suppose solutions are smooth and take
X = C∞([0, 1]).

For smooth solutions of the Allen-Cahn equation, the “free energy”

F(u) =
∫ 1

0

(
W (u(x)) +

ε2

2
(∂xu)2

)
dx (6)

decreases in time:

d

dt
F(u(t)) =

∫ 1

0

W (u)∂tu+ ε2∂xu ∂txu = −
∫ 1

0

(∂tu)2.

A fact of significance to us is that the Allen-Cahn equation has the structure
of gradient flow for this free energy, with respect to the L2 inner-product on
[0, 1] given by 〈u, v〉L2 =

∫ 1

0
u(x)v(x) dx. Namely, if u, v ∈ X and u satisfies

the boundary conditions, then

dF(u)v =
d
dτ
F(u+ τv)|τ=0 =

∫ 1

0

(W ′(u)v + ε2∂xu ∂xv) dx = 〈∇uF , v〉L2 ,

where the formal gradient ∇uF(u) = W ′(u)− ε2∂2
xu. So formally,

∂tu = −∇uF(u). (7)

Theory developed in the 1980’s established some satisfying facts re-
garding the behavior of solutions in the long-time limit t → ∞: For every
solution, u∞ = limt→∞ u(t) exists and satisfies the equation of equilibrium:

W ′(u)− ε2∂2
xu = 0. (8)

There are exactly two stable equilibrium states, and no more: u ≡ 1 and
u ≡ −1. Unstable equilibria are restrictions of periodic solutions of the
equation of equilibrium, which has first integral ε2v2/2 − W (u) = W0,
v = ∂xu.

Domain wall formation. These results contrast sharply with one’s
expectations based on the model with ε = 0 in (ii) above, and with numer-
ical computations performed with small ε > 0. One expects and computes
that u approaches 1 where u > 0 initially, and u approaches −1 where
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u < 0 initially. “Domain walls” or transition layers form between these do-
mains, at positions corresponding roughly to zeros in the initial data (so
not necessarily periodically arranged).

Structure of a domain wall. The structure of a domain wall, located
near position h ∈ (0, 1), has a characteristic width of order ε, and can be
described crudely in terms of the stretched variable y = (x − h)/ε as a
solution u = ±Θ(y) of the rescaled equilibrium equation

W ′(Θ)− ∂2
yΘ = 0, −∞ < y <∞, Θ(y)→ ±1 as y → ±∞.

Explicity one finds Θ(y) = tanh(y/2). Note that as x→∞,

tanh(x/2ε) = 1− 2 exp(−x/ε) +O(exp(−2x/ε)).

Thus the domain structure that one expects to develop consists of arbi-
trarily placed domain walls of characteristic width ε, separating domains in
which u is exponentially close to the stable states ±1. (For recent rigorous
results on the various stages of domain wall formation and evolution, see
[13].)

2.2. Domain wall dynamics by restricted gradient flow

Numerics indicates that the kind of domain wall pattern that develops
as just described essentially stopsa evolving, contrary to what theory says
should happen as t→∞. What actually happens is that the domain walls
typically move, albeit extremely slowly. A delicate formal analysis of the
domain wall dynamics was made by J. Neu (unpublished notes), and this
prompted subsequent development of rigorous geometric theory by Fusco
and Hale [21] and in [11, 9].

The result, which we shall derive here formally using a restricted gradi-
ent flow approach, is that given N domain walls initially located at given
positions h1 < h2 < . . . < hN in (0, 1), the positions will evolve in time
according to equations well-approximated by exponentially small nearest-
neighbor interactions:

∂thj = 12ε
(

exp
(
−hj+1 − hj

ε

)
− exp

(
−hj − hj−1

ε

))
. (9)

Here the wall positions h0 = −h1 and hN+1 − 1 = 1− hN are obtained by
reflection through the boundaries.

aThis depends upon the fact that the relative minima of W are equal. Different relative

minima produce domain walls that move at speeds of order ε times the difference in
minima.
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Geometric description. The Fusco-Hale idea for a geometric descrip-
tion of these slow dynamics is to describe solutions containing N domain
walls in terms of an N -dimensional manifold of “metastable” states in
X. We will parametrize a state uh ∈ X on this manifold by a vector
h = (h1, . . . , hN ) ∈ ∆N of arbitrarily-placed well-separated domain wall
positions. Here we set

∆N =
{
h ∈ RN | 0 < h1 < . . . < hN < 1, (hj+1 − hj)/ε > K

}
,

where K is a large constant. Then

MN =
{
uh | h ∈ ∆N

}
⊂ X

is an N -dimensional manifold which should approximate the metastable
states. Slowly evolving solutions will have a representation

u(x, t) = uh(t)(x) + v(x, t) (10)

where the error v(x, t) is ideally zero or approaching zero ifM is invariant.
Restricted gradient flow. Our formal approach here will be to con-

structMN as “approximately invariant” and compute equations of motion
for the domain wall positions by restricting the gradient flow from (7) to
the manifoldMN .

Geometrically this can be interpreted in a couple of equivalent ways.
One way is to simply project the right-hand side of the Allen-Cahn PDE
(3) onto the tangent space TMN , using the L2 inner product on [0, 1]:
〈u, v〉L2 =

∫ 1

0
u(x)v(x) dx. Thus we require

〈∂t(uh), v〉L2 = 〈−∇uF(uh), v〉L2 for all v ∈ TMN . (11)

Since ∂t(uh) =
∑N

j=1(∂u
h/∂hj)∂thj , we get N equations for N unknowns

∂thj .
An equivalent, more geometric, interpretation is useful to describe, di-

rectly in terms of a gradient flow

∂th = −∇hF̃(h), where F̃(h) := F(uh). (12)

This is a gradient flow on ∆N ⊂ RN , and the gradient is computed using the
appropriate Riemannian metric pulled back from the tangent space TMN .
Namely, given two tangent vectors a, ã ∈ RN = T∆N , we let

v =
∑

j

aj
∂uh

∂hj
, ṽ =

∑
j

ãj
∂uh

∂hj
, (13)
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and define a metric gh : T∆N × T∆N → R by

gh(a, ã) = 〈v, ṽ〉L2 =
∑
i,k

gik aiãk, gik =
〈
∂uh

∂hi
,
∂uh

∂hk

〉
L2

.

The gradient ∇hF̃(h) is determined from

gh(∇hF̃(h), a) = dF̃(h)(a) =
d
dτ
F(uh+τa)|τ=0 =

N∑
k=1

〈
∇uF(uh),

∂uh

∂hk

〉
L2

ak.

The equations (11) and (12) are easily seen equivalent using the correspon-
dence (13):

gh(∂th, a) = gh(−∇hF̃(h), a) = 〈−∇uF(uh), v〉L2 = 〈∂t(uh), v〉L2 .

We can adequately approximate the metric coefficients gik formally us-
ing the domain-wall approximation that for x near hj ,

uh(x) ≈ ±Θ
(
x− hj

ε

)
,

∂uh

∂hj
≈ −∂xu

h ≈ ∓1
ε

Θ′
(
x− hj

ε

)
.

Then

gij =
∫ 1

0

∂uh

∂hi

∂uh

∂hj
dx ≈ 0 (i 6= j), (14)

gjj =
∫ 1

0

(
∂uh

∂hj

)2

dx ≈ 1
ε

∫ +∞

−∞
Θ′(y)2 dy (15)

Since 1
2Θ2

y = W (Θ) + 0 one concludes∫ +∞

−∞
Θ2

y dy =
∫ 1

−1

√
W (θ) dθ = 2

∫ 1

0

1− θ2

2
dθ =

2
3
. (16)

Thus the restricted metric is approximated by a diagonal matrix:

gij ≈
2
3ε
δij .

Approximating manifold of metastable states. The essential prop-
erties of the slowly evolving solutions are that W ′(u)−ε2∂2

xu ≈ 0 away from
x = hj and u(hj , x) ≈ 0 for x ≈ hj . Thus we define MN as follows: Given
h = (h1, . . . , hN ) ∈ ∆N require for j = 0, . . . , N that

W ′(uh)− ε2∂2
xu

h = 0 for x ∈ Ij := (hj , hj+1), (17)

uh(x) = 0 for x = hj and hj+1, (18)

(−1)juh(x) > 0 in Ij . (19)
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That is, in each interval Ij we have a piece of a periodic equilibrium with
period 2lj , where lj = (hj+1 − hj)/ε measures domain length: Requiring
U(y, l) to satisfy

W ′(U)− ∂2
yU(y, l) = 0, (20)

U(0, l) = U(l, l) = 0, (21)

U(y, l) < 0 for 0 < y < l, (22)

we have

uh(x) = (−1)j U
(
x− hj

ε
,
hj+1 − hj

ε

)
.

Thus described, the states uh are not smooth. They are continuous but
∂xu

h is generally discontinuous at hj . For this reason, the states uh in
[11, 9] were smoothed, trading one nuisance for another. (Results obtained
without smoothing have been reported by Reznikoff (in preparation).)

Now, the restricted free energy turns out to be a sum of terms that
depend only on the domain lengths: With

V (l) =
∫ l

0

1
2
(∂yU)2 +W (U(y, l)) dy, (23)

we can write

F̃(h) = F(uh) =
∑

j

∫
Ij

(
ε2

2
(∂xu

h)2 +W (uh)
)

dy =
∑

j

ε V

(
hj+1 − hj

ε

)
.

We compute the gradient ∇hF̃(h) as follows: Given a ∈ RN ,

d
dτ
F̃(h+ τa)|τ=0 =

∑
k

V ′
(
hk+1 − hk

ε

)
(ak+1 − ak)

=
∑

k

(
V ′
(
hk − hk−1

ε

)
− V ′

(
hk+1 − hk

ε

))
ak

=
∑

k

∂F̃
∂hk

ak =
∑
j,k

gjk∇hF̃(h)j ak.

Using the diagonal approximation of the metric from above gives the
approximate equations of motion

∂thj = −∇hF̃(h)j ≈
3ε
2

(
V ′
(
hk+1 − hk

ε

)
− V ′

(
hk − hk−1

ε

))
(24)

The interpretation is that each domain wall moves as if attracted by each
of its two nearest neighbors, with “force” determined by the potential V .
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Approximation of the force. With V (l) given by (23), one one ob-
tains

V ′(l) =
(

1
2
(∂yU)2 +W (U)

)
y=l

+
∫ l

0

(
(∂yU)(∂2

ylU) +W ′(U)∂lU
)

dy

=
(

1
2
(∂yU)2 +W (U)

)
y=l

+ (∂yU)(∂lU)
∣∣∣l
0

after an integration by parts using (20). Recall that U(l, l) = 0, hence we
have (∂yU + ∂lU)(l, l) = 0. Also ∂lU(0, l) = 0. Thus

V ′(l) =

const. on [0,l]︷ ︸︸ ︷(
−1

2
(∂yU)2 +W (U)

) ∣∣∣∣∣
y=l

= W

(
U
(
l

2
, l

))
.

To approximate this, we use that for large l, we have U(y+ l/2, l) ≈ −1
when |y| � l/2 (meaning 0� y + l/2� l), whence

U(y +
l

2
, l) ≈ −1 + Ũ(y) where ∂2

y Ũ −W ′′(−1)Ũ = 0.

Since W ′′(−1) = 1 and ∂yU(l/2, l) = 0, we have Ũ(y) = α(ey + e−y). On
the other hand, near the right endpoint of [0, l], U is approximated by the
domain wall structure:

U(ỹ + l, l) ≈ Θ(ỹ) = tanh (ỹ/2) ≈ −1 + 2 eỹ for l/2� ỹ + l� l.

To identify α = α(l), we match these approximations in the regime 0� y =
ỹ + l/2 � l/2. This means we require αeỹ+l/2 = 2eỹ, whence α = 2 e−l/2

and consequently for large l we get the approximation

V ′(l) = W (U(l/2, l)) ≈ W (−1) +W ′(−1) Ũ +
1
2
W ′′(−1) Ũ2

=
(2α)2

2
= 8 e−l.

Together with (24) this leads to the equations of motion in (9).

2.3. Punctuated equilibrium and 1D bubble bath

Lifetime of metastable states. Let us imagine a system in which 1/ε,
the ratio of macroscopic domain size to microscopic domain wall thickness,
is quite large (say > 105), and suppose that at some point the system
settles into a metastable state with a great number of domain walls. Then
due to the exponential dependence of terms in (9) on domain size, one
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can expect the dynamics to be dominated by the smallest domains. Say
l = min(hj − hj−1), then approximately

∂tl = −24ε e−l/ε, or ∂tel/ε = −24.

According to this equation, the domain size l(t) shrinks to zero in a finite
time T determined from exp(l0/ε) = 1−24T . The following table gives some
indication of how the lifetime T of the metastable state depends strongly
on the minimum initial domain size, l0/ε (measured in units of domain wall
thickness):

l0/ε 5 10 20 50 100
T 4 918 2× 107 2× 1020 1042

In geometric terms, we have described the nature of N -wall metastable
states using an approximately invariant manifoldMN . (Of course there are
two of these, using −uh.) Interestingly, however, there is indeed an invariant
manifold close to MN , which nearby solutions approach at a uniform rate
as long as domain walls remain well separated [9]. That metastable states
should correspond to such an invariant manifold was conjectured by Fusco
and Hale [21], who also suggested that this manifold is part of the global
unstable manifold of the unstable N -wall equilibrium state with equal do-
main sizes hj+1 − hj . Indeed it was established in [9] that this unstable
manifold is given in terms of (10) (with smoothed uh) as a graph h 7→ v

globally over ∆N with exponentially small Lipschitz constant.
Punctuated equilibrium. The analysis so far indicates that the story

of how gradient systems relax to equilibrium is not as simple as looking at
stable steady states (here only u ≡ 1 and u ≡ −1) and finding the local
rate of approach to these states (which here is O(1)). Instead, dynamics
in the simple PDE (3) can be expected to exhibit a cascading behavior
reminiscent of the “punctuated equilibrium” description of species evolu-
tion advocated by Stephen Jay Gould. (Some rigorous results along these
lines were established in [18].) We might expect a typical solution trajec-
tory to behave as follows. Domain walls develop and the system approaches
an N -dimensional metastable manifold of states with N domain walls po-
sitioned arbitrarily as determined by initial data. It flows very slowly along
this invariant manifold until two domain walls come close together (or one
approaches the boundary). The two walls (or the one and its reflection)
rapidly annihilate each other on an order 1 time scale, and the solution
then settles into approaching an N − 2 (or N − 1) dimensional metastable
manifold. The slow motion grows dramatically slower as fewer walls remain,
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with greater distance between them. Note that the solution may be “near
equilibrium” in the sense of being nearly stationary, but need never be near
an equilibrium state. In the limit t → ∞, one can expect to approach one
of the stable states u ≡ ±1—but it may not be practical to wait that long!

1D bubble bath. So far we have reduced the study of long-time be-
havior in the Allen-Cahn PDE to the motion of domain walls according to
the ODEs in (9), and have further simplified by noticing that the largest
term in these ODEs should strongly dominate and produce collapse of the
smallest domain. This suggests an even simpler model that we can use to
investigate the statistical behavior of the coarsening process.

Starting by partitioning the interval [0, 1], placing domain walls ran-
domly according to some scheme. Then coarsen this domain pattern ac-
cording to the following recipe:

(1) The smallest domain joins its two neighbors.
(2) Nobody else moves.
(3) Repeat iteratively.

This process is a kind of 1D model of bubble bath—the smallest bubble pops
first, and the foam becomes coarser in time. This 1D model of coarsening is
easy to simulate by computer with many thousands of domains. (See [10].
Many results for related models also exist in the physical literature; see [17]
for a review.) Results show a remarkable thing: After scaling by mean size,
the distribution of domain sizes develops toward a universal self-similar
form. This raises the interesting question:

Why?

2.4. Mean-field model of domain growth—the

Gallay-Mielke transform

To try and understand this phenomenon of universal self-similarity, we for-
mulate a model of this domain coalescence process that aims to describe
how the domain size distribution evolves in time. The main idea is to de-
velop a rate equation for the domain size distribution function, based upon
the mean-field assumption that the sizes of domains undergoing coalescence
are accurately characterized by the overall size distribution of all domains.
For the model that results, a remarkable solution procedure was recently
developed by Gallay and Mielke [22], which we will use in this section to
prove a theorem regarding universal approach to self-similar form.
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Derivation of the model. We let x denote domain size, and at first
take x discrete: x = j∆x, j ∈ N. We introduce a function to describe the
domain size distribution by

f(x, t)∆x = expected number of domains of size x
(normalized by initial total)

Let L(t) denote the size of the smallest domain remaining at time t; thus
f(x, t) = 0 for x < L(t). And let N(t) =

∑
x f(x, t)∆x be the total number

at time t.
In the time interval (t, t + ∆t), the total number of coalescence events

(involving the smallest remaining domain combining with its two neighbors)
is expected to be

f(L(t), t)∆L = f(L(t), t)
∆L
∆t

∆t.

The change in number of size-x domains will equal the total number of co-
alescence events times the sum over subevents of the relative probability of
the subevent times the change in number of size-x domains in the subevent.
Three types of subevents affect size-x domains:

(1) Sizes (x,L, y) combine to form x+ L+ y.
(2) Sizes (y,L, x) combine to form y + L+ x.
(3) Sizes (y,L, x− y − L) combine to form x.

Under the mean field assumption, these events respectively have the relative
probabilities

f(x)∆x
N

f(y)∆x
N

,
f(y)∆x
N

f(x)∆x
N

,
f(y)∆x
N

f(x− y − L)∆x
N

.

From these ideas, one finds the change in number of size-x domains is

∆(f(x, y)∆x) =

f(L, t)∆L
∑

y

(
f(y, t)∆x

N

f(x− y − L, t)∆x
N

− 2
f(x)∆x
N

f(y)∆x
N

)
Dividing by ∆x∆t and passing formally to the continuum limit, one obtains

∂tf(x, t) =
f(L, t)L̇
N2

∫ ∞

0

(
f(y, t)f(x− y − L, t)− 2 f(x, t)f(y, t)

)
dy (25)

This is the model rate equation we seek [36, 10].
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Proceeding formally, we derive a useful moment identity and reformulate
the rate equation. In the discrete case, we can write a general moment
identity as follows:

∆

(∑
x

a(x)f(x, t)∆x

)
= −a(L)f(L, t)∆L

+
f(L, t)∆L

N2

∑(
a(x̃+ y + L)f(y)f(x̃)− 2 a(x)f(x)f(y)

)
∆x∆y

=
f(L, t)∆L

N2

∑(
a(x+ y + L)− a(x)− a(y)− a(L)

)
f(x)f(y)∆x∆y.

In the continuum limit this yields

∂t

∫ ∞

L
a(x)f(x, t) dx (26)

=
f(L, t)L̇
N(t)2

∫ ∞

0

∫ ∞

0

(
a(x+ y + L)− a(x)− a(y)− a(L)

)
f(x, t)f(y, t) dxdy

Considering a(x) = x yields

∂t

∫ ∞

0

xf(x, t) dx = 0,

thus total size is preserved (if finite). Taking a(x) = 1 next we get

∂tN(t) = −2 f(L, t)L̇.

Thus total number decreases, and average domain size x̄ =
∫
xf/

∫
f in-

creases. Also a(x) = x2 yields a growth law for second moment:

∂t

∫ ∞

0

x2f(x, t)dx = 2f(L, t)L̇(x̄2 + 2x̄L).

Our model is invariant under reparametrization in time: If one changes
variables via t = T (t̃), f̃(x, t̃) = f(x, t), L̃(t̃) = L(t), then the equation
retains its form since

∂t̃f̃ = Ṫ ∂tf, ∂t̃L̃ = Ṫ ∂tL.

The model has no intrinsic time scale since the process is simply driven by
the rate of collapse of smallest domains.

Following Gallay and Mielke, it is convenient to parametrize time by the
size of smallest domain, and take L(t) = t. Also it is convenient to rewrite
the model in terms of the probability density for domain size:

ρ(x, t) =
f(x, t)
N(t)

.
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Since for L = t we have

∂t

(
f(x, t)
N(t)

)
=
∂tf

N
− f∂tN

N2
=
∂tf(x, t)

N
+
f(x, t)
N

· 2f(t, t)
N

,

the model takes the form

∂tρ(x, y) = ρ(t, t)
∫ x−t

0

ρ(y, t)ρ(x− y − t, t) dy for x > t, (27)

with ρ(x, t) = 0 for x < t. Note that due to the latter condition, the
integrand vanishes unless t < y < x− 2t, requiring x > 3t.

The Gallay-Mielke global linearizing transform. An amazing so-
lution procedure for this model was found by Gallay and Mielke in [22],
and used to establish several results regarding convergence to self-similar
form at various rates depending upon the tail of the initial data. In these
notes our aim is to give a simple proof of universal weak convergence to
self-similar form for all classical solutions with finite total number and size.

Consider the initial value problem for the model (27), with initial data
given at a time when smallest domain size t = 1, say. Leaving aside til
later the question of solvability of this initial value problem, let us describe
the solution procedure of Gallay and Mielke. For brevity we use the (proba-
bilists’) notation ρt(x) = ρ(x, t) to denote the solution at time t, and denote
its Fourier transform by

Fρt = ρ̂(ξ, t) =
∫

R
e−iξxρ(x, t) dx.

With Φ(z) = 1
2 ln 1+z

1−z = tanh−1 z, introduce the change of variables

vt(x) = F−1 ◦ Φ ◦ Fρt, so v̂t(ξ) =
1
2

ln
(

1 + ρ̂t

1− ρ̂t

)
.

In terms of vt the solution is given by the simple formula (!)

vt(x) = H(x− t)v1(x) =

{
v1(x), x ≥ t,
0, x ≤ t,

where H is the Heaviside function. Thus, to find the solution to the non-
linear model (27) at time t, the procedure is:

(i) Transform the initial data ρ1(x) = ρ(x, 1): Let v1(x) = F−1 ◦ Φ ◦ Fρ1.
(ii) Set to zero for x ≤ t: Let vt(x) = H(x− t)v1(x).
(iii) Invert the transformation: ρt = F−1 ◦ Φ−1 ◦ Fvt = F−1 (tanhFvt) .
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Let us now formally derive this method. I prefer to work with the
Laplace transform to simplify rigorous analysis later. Denote the Laplace
transform of ρt by

Rt(q) = Lρt(q) =
∫ ∞

0

e−qxρt(x) dx.

The integral term on the right-hand side of (27) is a shifted convolution,
and its Laplace transform is given by

L(ρ ∗ ρ(· − t)) =
∫ ∞

0

∫ x−t

0

e−q(x−t−y+t+y)ρt(y)ρt(x− t− y) dy dx

=
∫ ∞

0

∫ ∞

0

e−qx̃e−qỹe−qtρt(ỹ)ρt(x̃)dỹ dx̃

= e−qtRt(q)2.

Since ∂tRt = ∂t

∫ ∞

t

e−qtρ(x, t) dx = −e−qtρ(t, t) +
∫ ∞

0

e−qx∂tρdx, taking

the Laplace transform of (27) yields

∂tRt = α(t)e−qt(−1 +R2
t ), where α(t) = ρ(t, t). (28)

This yields

∂tΦ(Rt) =
∂tRt

1−R2
t

= −α(t)e−qt,

whence upon integration,

Φ(Rt)− Φ(R1) = −
∫ t

1

α(s)e−qs ds. (29)

Note that for q > 0,

Rt(q) =
∫ ∞

t

e−qxρt(x) dx ≤ e−qt

∫ ∞

t

ρt(x) dx = e−qt · 1→ 0 as t→∞.

Hence taking t→∞ in (29) above yields

Φ(R1) =
∫ ∞

1

α(s)e−qs ds = Lα. (30)

This formula determines α = ρ(·, ·) in terms of the initial data, according
to

α = L−1 ◦ Φ ◦ L ◦ ρ1.

Plugging back into (29) yields

Φ(Rt) =
∫ ∞

t

e−qsα(s) ds = L(H(· − t)α) = L(αt), (31)
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where we set αt(x) = H(x−t)α(x) for all x. Since tanh(Φ(z)) = z, it follows

Rt = tanh(Lαt), (32)

that is, ρt = L−1◦tanh ◦Lαt. This finishes the derivation. (In fact, αt = vt.)
Initial value problem. Here we sketch a proof of existence for classical

solutions of the initial value problem for the model (27), and a rigorous
justification of the solution formula (32). We fix τ = 1 and suppose that
ρτ : [τ,∞)→ R is given as a continuous function with

∫∞
τ
ρτ (x) dx = 1.

Note that since the solution is to satisfy ρt(x) = 0 for x < t, the
convolution term on the right-hand side of (27) will depend only upon
values of ρt(y) for τ < y < x − 2t ≤ x − 2τ . In particular, the right-hand
side vanishes for x < 3τ .

This means we can construct the solution for τ < t < 3τ by an inductive
procedure as follows: For τ < t ≤ x < 3τ we have ρt(x) = ρτ (x) and
in particular ρt(t) = ρτ (t). For τ < t ≤ 3τ , successively on strips x ∈
[kτ, (k + 2)τ ], for k = 3, 5, . . ., by simple integration in time we can now
compute

ρt(x) = ρτ (x) +
∫ t

τ

ρs(s)
∫ x−s

0

ρs(y)ρs(x− y − s) dy ds,

where the right-hand side is always known from a previous step. This de-
termines ρt(x) for τ ≤ t ≤ 3τ and all x.

To determine the solution globally for all t > 1, the idea is to replace
3τ by τ and repeat. But in order to justify this we need to verify that ρt

remains integrable and conserves total probability. In particular we need to
justify (28). Let us introduce the distribution function

Ft(x) =
∫ x

0

ρt(y) dz. (33)

This is the probability that a domain has size ≤ x at time t. Integrating
the convolution term in (27), we get∫ x

0

∫ ∞

0

ρt(y)ρt(z − y − t) dy dz =
∫

R
Ft(x− y − t)Ft( dy)

≤ Ft(x)
∫ x

0

Ft( dy) = Ft(x)2

since x 7→ Ft(x) is increasing. Thus ∂tFt(x) ≤ ρt(t)(Ft(x)2 − 1), and since
ρt(t) ≥ 0 and Ft(x) ≤ 1 initially, Ft(x) is decreasing in t for fixed x. It
follows Ft(∞) ≤ 1, and so the Laplace-Stieltjes transform

Rt(q) =
∫ ∞

0

e−qxFt( dx) =
∫ ∞

t

e−qxρt(x) dx
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is well defined and ≤ e−qt. Since ∂tFt(x) is continuous in t for all x, Rt(q)
is C1 in t for all q > 0. This justifies (28) and the solution formula (32) in
the previous subsection.

Background on Laplace transforms. Our rigorous study of dynamic
scaling behavior will make use of some basic facts regarding Laplace trans-
forms of measures on [0,∞). For this material we refer to Feller’s excellent
book [19]. In particular we recall the following main results from chapters
VIII and XIII of [19]:

1. (Selection theorem) Every sequence of probability distributions has a
subsequence that converges (weakly, i.e., in distribution) to some limit
distribution (possibly defective).

2. (Continuity theorem) Weak convergence of measures is equivalent to
pointwise convergence of the corresponding Laplace transforms.

3. (Tauberian theorem) Let U be a measure on [0,∞) with U(0) = 0 and
suppose its Laplace-Stieltjes transform is

ω(q) =
∫ ∞

0

e−qxU( dx).

Let p ∈ [0,∞), and let L be a function slowly varying at ∞, meaning
limt→∞ L(tx)/L(t) = 1 for all x > 0. Then the following are equivalent:

(i) U(t) = U([0, t]) ∼ tpL(t) as t→∞.
(ii) ω(q) ∼ q−pL(1/q)Γ(1 + p) as q → 0.

For later reference we also now recall a fundamental lemma on scaling limits:

4. (Rigidity of scaling limits) Suppose U : [0,∞) → R is positive and
increasing, and suppose the following limit exists:

lim
t→∞

U(tx)
U(t)

= ψ(x) ≤ ∞,

for all x in some set S dense in [0,∞). Then necessarily the limit is
a power law: ψ(x) = xp for some p ∈ [0,∞], and furthermore, U is
regularly varying at ∞ with exponent p, meaning U(t) = tpL(t) where
L is slowly varying at ∞.

2.5. Proof of universal self-similar behavior

The goal here is to prove that every solution of the coarsening model (27)
with initially finite expected size

∫∞
0
xρ1(x) dx will converge in distribution

to a universal self-similar form. One can think of this as a dynamic analog of
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the central limit theorem in probability. See section 5.2 below for a further
development of this analogy.

Rescaling. In studying dynamic scaling behavior for this model, it is
natural to rescale to keep the smallest domain size fixed. Hence we introduce
the rescaled probability distribution function

ηt(x) = Ft(tx) =
∫ tx

0

ρt(y) dy. (34)

We have ηt(x) = 0 for x < 1, and ηt(∞) = 1. Its Laplace transform is

Nt(q) =
∫ ∞

1

e−qxηt( dx) =
∫ ∞

t

e−qx/tFt( dx) = LFt(q/t)

We introduce the notation

A(t) =
∫ t

1

α(s) ds =
∫ t

1

ρs(s) ds, so A( ds) = α(s) ds.

By the solution formula (32) we have that

Nt(q) = tanh
(∫ ∞

1

e−qsA(tds)
)
. (35)

Self-similar solutions. For self-similarily, Nt ≡ N is independent of
t. Since then we have H(s− t)A(tds) = A( ds) for all t, we must have

A( ds) =
β

s
H(s− 1) ds

for some constant β > 0. This means that the Laplace transform of the
profile

N(q) = tanh
(
β

∫ ∞

1

e−qs

s
ds
)

= tanh(β Ei(q)), (36)

where Ei(q) =
∫∞

q
(e−s/s) ds is the exponential integral function.

Only certain values of β are physically meaningful here. Note that:

(i) To have ȳ =
∫ ∞

1

yη( dy) <∞ we need

−∂qN(q) =
∫ ∞

1

e−qyy η( dy)−→ȳ <∞ as q → 0.

(ii)
d
dx

tanhx = sech2 x =
4

(ex + e−x)2
=

4e−2x

(1 + e−2x)2
.

(iii) Ei(q) =
∫ ∞

q

e−s

s
ds = − ln q + γ(q), where γ(0) ≈ 0.577216 is Euler’s

constant.
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(iv) exp(−β Ei(q)) = qβeβγ(q), hence as q → 0,

−∂qN(q) = sech2(β Ei(q))
βe−q

q
=

4βe−q

q

q2βe2βγ

(1 + q2βe2βγ)2
∼ cq2β−1.

Thus, we find that it is necessary that

β > 0, for N(q) > 0,

β ≤ 1
2 , for − ∂qN(q) =

∫ ∞

0

e−qyyη(dy) to decrease in q,

β = 1
2 , for − ∂qN(q)→ ỹ ∈ (0,∞) as q → 0.

So there is a unique possibility for a self-similar solution with finite expected
domain size, namely with β = 1/2 and

N(q) = tanh
(

1
2

Ei(q)
)
. (37)

Main result. At this point we need to address the following questions:

• Does a positive self-similar solution really exist satisfying (37)?
• Is it stable, and does it attract every solution?

The answers are positive.

Theorem 1: Suppose that the initial data for model (27) satisfy∫∞
0
xρ1( dx) < ∞. Then with ηt(x) given by (34), we have lim

t→∞
ηt(x) =

η∗(x) for all x > 1, where η∗ is a probability distribution function satisfy-
ing Lη∗(q) = tanh( 1

2 Ei(q)).

Proof: 1. By the selection and continuity theorems for Laplace transforms,
it suffices to show Nt(q) → tanh( 1

2 Ei(q)) for all q > 0, or equivalently by
(35), ∫ ∞

1

e−qsA(tds) −→
∫ ∞

1

e−qs

2s
ds as t→∞ for all q > 0. (38)

2. Let x̄ =
∫∞
1
yη1(dy). Then as q → 0, −∂qN1(q) =

∫∞
1

e−qxxρ1(dx)→ x̄,
and thus N1(q) = 1 − qx̄(1 + σ(1)). We have LA(q) =

∫∞
1

e−qsA( ds) =
Φ(N1(q)) by (30), hence

−∂qLA(q) =
∫ ∞

1

e−qssA( ds) =
−∂qN1(q)

(1 +N1(q))(1−N1(q))

=
x̄

(1 + 1)(qx̄)
· (1 + σ(1)) =

1
2q

(1 + σ(1))
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as q → 0. By the Tauberian theorem, it follows that the distribution func-
tion for the measure sA( ds) satisfies∫ t

0

sA( ds) =
t

2
(1 + σ(1)) as t→∞.

3. Thus the distribution function for the measure sA(tds) satisfies

µt(x) =
∫ x

0

sA(tds) =
1
t

∫ tx

0

sA( ds)→ x

2
as t→∞,

i.e., µt → 1
2 in distribution. It remains to show that for all q > 0,∫ ∞

1

e−qs

s
µt( ds)→

∫ ∞

1

e−qs

s

ds
2

as t→∞.

We establish this in two steps: (i) By the weak convergence theorem for
probability measures, given x̄ > 0, since the probability distribution func-
tion

νt(x) = min(µt(x)/µt(x̄), 1)→ min(x/x̄, 1) as t→∞,

we have
∫∞
0
u(s)µt( ds)/µt(x̄) →

∫∞
0
u(s) ds/x̄ for all u ∈ Cc([0, x̄)) (con-

tinuous u with compact support in [0, x̄), and hence∫ ∞

0

u(s)µt( ds)→
∫ ∞

0

u(s)
ds
2
.

This holds also for discontinuous u, provided that
∫∞
0
u = inf

∫∞
0
v+ =

sup
∫∞
0
v−, where the inf and sup are taken over all v− ≤ u ≤ v+ with

v+, v− ∈ Cc([0, x̄)). Hence for all x > 1, we can conclude that∫ x

1

e−qs

s
µt( ds)→

∫ x

1

e−qs

s

ds
2
.

(ii) We compute that∫ ∞

0

e−qsµt( ds) =
∫ ∞

0

e−qssA(tds) =
1
t

∫ ∞

0

e−qs/tsA( ds)

=
1
t

−∂qN1(q/t)
(1 +N1)(1−N1(q/t))

≤ 1
t

1
q/t

=
1
q

independent of t, since −∂qN1 decreases. (By the mean value theorem,
1−N1(q/t) = −∂qN1(c)(q/t) for some c < q/t.) Now∫ ∞

x

e−qs

s
µt( ds) ≤ 1

x

∫ ∞

0

e−qsµt( ds) ≤ 1
x
· 1
q
< ε
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for x > 1/qε; this estimate controls the tail. It follows that∫ ∞

1

e−qs

s
µt( ds)→

∫ ∞

1

e−qs

s

ds
2

as t→∞. This finishes the proof.

3. Models of domain coarsening in two and three
dimensions

Universal scaling behavior. One of the classic dynamic scaling phenomena
observed in material systems is Ostwald ripening, a process that occurs
during the condensation of a supersaturated vapor, for example (think of
clouds or fog), or during phase separation in metallic alloys. Many nuclei
of the new phase appear and grow until there is a rough equilibrium with
a complex arrangement of particles. The system continues to evolve in the
late stages of this phase transition, however, driven by fluxes generated
by curvature variation. In certain mixtures of metals, Ostwald observed
that the typical particle size grows like t1/3. The total phase fraction is
conserved; large particles grow while small particles shrink and disappear.

An important paradigm for understanding this power-law scaling be-
havior is the model of Lifshitz and Slyozov [31] and Wagner [50] for the
evolution of the particle size distribution. In this section we aim to de-
scribe how the LSW model fits in a hierarchy of multidimensional domain
coarsening models similar to the one-dimensional hierarchy of the previous
section, and indicate how recent mathematical analysis has helped to clarify
why the LSW model is an unsatisfactory explanation for power-law scaling
behavior as observed in practice.

Diffuse and sharp interfaces. We start with diffuse interface models
(though there is research relating these to even more microscopic stochastic
Ising models). Domain walls are “diffuse interfaces” which become “sharp
interfaces” in the limit that their characteristic width divided by a macro-
scopic scale is taken to zero. The free energy concentrates on domain walls
and becomes proportional to the interface surface area. Formally, curvature
is the gradient of surface area (as we will see), and gradient flow means that
coarsening in multidimensional systems is driven in many cases by the cur-
vature of interfaces.

Allen & Cahn [3] argued by physical considerations that weakly curved
domain walls in the multidimensional PDE

∂tu = −f(u) + ∆u (39)
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should move with normal velocity v proportional to mean curvature κ. This
result was derived a few years later within the systematic formal approxima-
tion procedure of matched asymptotic expansions by Rubinstein, Sternberg
& Keller [48]. The same method was used to produce many interesting sin-
gular limits in the phase field system (a model of solidification) by Caginalp
[8].

The hierarchy that leads to the LSW model of Ostwald ripening starts
with the Cahn-Hilliard equation (a generalized diffusion equation)

∂tu = ∆(f(u)− ε2∆u). (40)

The sharp-interface limit of the Cahn-Hilliard equation turns out to be a
model of phase transition kinetics found by Mullins & Sekerka to generate
shape instabilities [46]: Given an interface set Γ separating two phases of
material, steady-state diffusion of material (subject to a Gibbs-Thomson
boundary condition for chemical potential) produces a jump in flux that
drives the interface to move. Thus, the normal velocity v of Γ(t) is deter-
mined by solving a boundary value problem of the following form (setting
physical constants to 1):

∆u = 0 in R3 \ Γ, (41)

u = κ on Γ, (42)

v = [∂νu]+− on Γ. (43)

The LSW model arises from this model in a dilute regime in which
particles are widely separated and the potential field u is approximated by
a sum of “monopoles”

∑
aj/|x− xj | plus a constant mean field. Below we

will describe how the monopole model arises naturally by restriction from
the gradient structure of the Mullins-Sekerka model. The LSW model then
inherits a gradient structure that turns out to be useful for some things—see
section 4.2 for an example.

3.1. Diffuse and sharp-interface models of nanoscale island

coarsening

Rather than discuss the simplest situation in detail, it is interesting to con-
sider a recent treatment of a problem of current interest related to nanoscale
material interfaces. Understanding the dynamics of nanoscale structures is
important for much emerging technology (such as the production of gem
diamonds(!) by chemical vapor deposition [16]).
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We study the motion of “steps” on surfaces of pure crystals in the vicin-
ity of atomically flat (so-called vicinal surfaces). On the atomic level, ma-
terial surfaces can be modeled discretely in terms of atoms occupying a
lattice, or they can be modeled on the large scale at the continuum level
by smooth surfaces when the surface is atomically rough. In an intermedi-
ate range described nicely in a review article of Jeong and Williams [26],
crystalline materials can have atomically flat surfaces with partially filled
layers of atoms on top. The edges of these layers (“steps”) are atomically
rough and can be described by smooth curves that bound a raised “ter-
race” on the surface. Motion of these steps occurs due to thermal agitation
of atoms along step edges and attachment and detachment of single atoms
(adatoms) that diffuse on the terraces.

A classic continuum model of this step motion, that considers steps as
smooth curves forming sharp interfaces between terraces, is the Burton-
Cabrera-Franck (BCF) model [7]; see the treatment by Bales & Zangwill
[5]. We will first describe the BCF model and then discuss a diffuse-interface
approximation developed by Otto et al. [45] that yields the BCF model in
the sharp-interface limit.

BCF model. The BCF model is based on the step-terrace description
of the surface together with a number of assumptions: On the terraces,
adatoms: (i) are deposited at rate F per site; (ii) desorb from the terrace
with lifetime τ ; and (iii) diffuse, hopping to neighboring sites with rate D.
Let ρ(x, t) denote the adatom density (expected number of atoms at site
x) on a terrace (a region in R2 bounded by a union of smooth curves). The
processes can be accounted for by a discrete model. In a short time interval
∆t, the adatom density at site x on the terrace changes according to

ρ(x, t+ ∆t) ∼ ρ(x, t) +F∆t− ρ(x, t)∆t/τ +D∆t
∑

x′∈N(x)

(ρ(x′, t)− ρ(x, t)),

where the sum goes over a set N(x) of neighbors of site x. If the lattice
spacing is a, passing to a continuum model yields the PDE

∂tρ(x, t) = Da2∆ρ+ F − ρ/τ in R2 \ Γ (44)

where ∆ = ∂2
x1

+ ∂2
x2

is the Laplacian, and Γ is a set of curves comprising
the steps.

Near steps, BCF suppose that adatoms attach to or detach from terrace
edges at different rates from the upper and lower terraces. (This models
an effect known as the Ehrlich-Schwoebel barrier effect— adatoms on the
upper terrace experience a higher-than-usual potential barrier to get over
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the edge of the step.) Attachment produces a net normal velocity v for the
step in the direction of the lower terrace (denoted as the plus side here), and
is driven by the difference between the terrace step density ρ(x, t) and an
equilibrium constant ρ∗ corrected by a term proportional to step curvature
κ(x, t):

v

a
= k+(ρ+ − ρ∗(1 + ξκ)) + k−(ρ− − ρ∗(1 + ξκ)) on Γ. (45)

Here ρ+(x, t) and ρ−(x, t) are limits of ρ(y, t) as y approaches position x

on the step from the lower and upper terraces respectively. The quantities
k+, k−, ρ∗ and ξ are constants.

The continuum model is completed by an equation that states that the
flux of adatoms diffusing to the step edges balances the rate at which they
attach to the step: Letting ∂ν denote the derivative along the unit normal
ν that points from the upper to the lower terrace,

Da∂νρ
+ = k+(ρ+ − ρ∗(1 + ξκ)), (46)

−Da∂νρ
− = k−(ρ− − ρ∗(1 + ξκ)). (47)

Nondimensionaliztion and quasistatic limit. We nondimensionalize time
and space by t = T t̃, x = Lx̃. We take the time scale of interest to be
T = 1/F , the mean rate that layers are deposited. We presume the lifetime
τ � TF is long by comparison.

The length scale of interest L is taken to balance the effects that curva-
ture and deposition have upon density variations—we require

ρ∗ξ

L
∼ FL2

Da2
, so L =

(
Da2ρ∗ξ

F

)1/3

,

and scale excess density according to

w = ρ− ρ∗ =
ρ∗ξ

L
w̃.

Then in terms of new variables (and dropping the tildes), the BCF model
equations take the form

∆w + 1 = 0 (48)

on terraces, and

v = ∂νw
+ − ∂νw

−, (49)

ζ+ ∂νw
+ = w+ − κ, (50)

−ζ− ∂νw
− = w− − κ (51)



Lectures on dynamics in models of coarsening and coagulation 27

at steps.
The time derivative ∂tw in (48) is neglected by supposing the diffusion

time L2/Da2 is small compared to T . When ζ± = 0, the conditions in (50)–
(51) reduce to a Gibbs-Thomson boundary condition at steps. In this case,
in the absence of deposition flux (replacing (48) by ∆w = 0), the interface
dynamics reduces to the Mullins-Sekerka model.

Diffuse-interface approximation. We now describe the diffuse-
interface approximation to this BCF model that was constructed by Otto,
Penzler, Rätz, Rump, and Voigt [45]. The height of terraces in the sharp-
interface model is an integer times the thickness of an atomic layer (taken
as 1 here). In the diffuse approximation, the material surface height z(x, t)
is modeled as a smooth function whose “free energy”

F(z) =
∫

R2

ε

2
|∇z|2 +

1
ε
G(z) dx

is bounded. Here G : R → R is a smooth function that we take to be like
sin2(πz): periodic with period 1, zero at integers, and positive otherwise.
We take it normalized so

∫ 1

0

√
2G(z) dz = 1. If F(z) is small, it should

mean z is close to an integer in large regions corresponding to terraces,
separated by narrow transition zones between.

The equation governing the evolution of z(x, t) will take the form of a
modified Cahn-Hilliard equation. This takes the form of a diffusion equation

∂tz +∇· j = 1 (52)

to hold everywhere in space, with the “flux” j given in terms of a “chemical
potential” w according to

(1 + ε−1ζ2(z))j = −∇w, (53)

w = εζ1(z)∂tz − ε∆z + ε−1G′(z). (54)

The drag coefficient ζ1(z) and mobility coefficient ζ2(z) are non-negative
and 1-periodic. We take ζ2(z) to vanish on integers and be positive otherwise
(like G); this is to force the flux j to be small in the transition layers as
ε→ 0.

Equations (52)–(54) comprise the OPRRV model. For a closed system
(replace 1 by 0 in (52)) with no-flux boundary conditions ν ·j = 0, the “free
energy” F(z) decreases:

d
dt
F(z) =

d
dt

∫ (
ε

2
|∇z|2 +

1
ε
G(z)

)
dx =

∫ (
−ε∆z + ε−1G′(z)

)
∂tz

=
∫

(w − εζ1 ∂tz)∂tz =
∫
∇w · j − εζ1(∂tz)2 ≤ 0.
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Method of matched asymptotic expansions. We describe how the evolu-
tion of z by motion of transition layers yields the BCF interface dynamics
formally in the limit ε → 0, using the method of matched asymptotic ex-
pansions. Mathematically, the method involves constructing an approximate
solution to the OPRRV equations in two overlapping zones: One constructs
(i) an inner expasion to be valid distances O(ε) from the evolving steps
Γ(t); and (ii) an outer expansion to be valid distances O(1) from the steps.
The two expansions are linked by a matching procedure at intermediate
distances from the steps. Maximizing the order of accuracy of the approxi-
mation will require step evolution to be given by the sharp-interface BCF
model. Further insight on the formal matching procedure can be found in
[20, 8].

We are mainly interested in interface dynamics, so we will neglect the
deposition flux, replacing 1 by 0 on the right hand sides of (48) and (52).

Consider the outer expansion first: We seek z(x, t) in the form

z(x, t) = z0(x, t) + εz1(x, t) +O(ε2),

where z0, z1 are independent of ε, with similar expansions for w and j.
Plugging these into the equations, we require the O(ε−1) terms balance,
yielding

G′(z0) = 0 and ζ2(z0)j0 = 0.

By our hypotheses, the first equation forces z0(x, t) to take integer values,
constant in components complementary to the steps Γ(t). Then ζ2(z0) = 0
and j0 is not restricted.

Balancing terms of order O(1) yields three equations:

∂tz0 +∇· j0 = 0,

(1 + ζ ′2(z0)z1)j0 + ζ2(z0)j1 = −∇w0,

w0 = G′′(z0) z1.

Since 0 = ∂tz0 = ζ2(z0) = ζ ′2(z0), this simplifies to j0 = −∇w0 and

−∆w0 = 0, (55)

with w0 = G′′(0)z1. This is all we need from the outer expansion.
Next consider the inner expansion, distances O(ε) from the steps Γ(t),

which we take to be a union of smooth curves independent of ε. We suppose
without loss that the step models a single atomic layer, with z+

0 = 0,
z−0 = 1. We will need to “stretch” the coordinates normal to the steps. In
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the neighborhood of some point on Γ, introduce the signed distance

Φ(x, t) := ±dist(x,Γ(t))

from x to Γ(t), where we take the sign as + on the lower terrace and − on
the upper. Then ν(x, t) = ∇Φ(x, t) is a unit vector normal to Γ if x ∈ Γ.
The normal velocity of Γ at x is

v(x, t) = −∂tΦ.

We let r = Φ/ε, and for x near Γ change variables via x = y+ ε rν(y, t) for
y ∈ Γ(t). In principle, this yields a local change of variables (x, t) 7→ (y, r, t).
It is a convenient rule, however, to regard quantities Q(y, r, t) as having the
form Q(x, r, t), in which x is not restricted to lie on Γ but Q must be
constant as x varies along ν in the first argument, i.e., ν · ∇xQ = 0.

We seek our inner expansion in the form

z = Z0(x, r, t) + εZ1(x, r, t) +O(ε2),

j = J0(x, r, t) ν(x, t) +O(ε),

w = W0(x, r, t) +O(ε), r = Φ(x)/ε.

Here, the indicated functions of (x, r, t) are to be independent of ε and need
to be determined for all r ∈ (−∞,∞). Evaluating derivatives by the chain
rule, we have

∂tz = −ε−1v ∂rZ0 +O(1),

∇ · j = ε−1∇Φ · ν ∂rJ0 +O(1) = ε−1∂rJ0 +O(1),

∇w = ε−1∇Φ ∂rW0 +O(1),

∆z = ε−2∂2
rZ0 + ε−1∆Φ ∂rZ0 +O(1).

A fact that must be left to the reader to check is that for x ∈ Γ(t),

∆Φ(x, t) = κ(x, t)

is the curvature of Γ(t).
We now use these expressions in the OPRRV model equations (52)–(54)

and match terms of order O(ε−1) to find:

−v∂rZ0 + ∂rJ0 = 0, (56)

−∂2
rZ0 +G′(Z0) = 0, (57)

ζ2(Z0)J0 = −∂rW0. (58)

From these equations it follows that

−v Z0 + J0 = λ(x, t) (59)
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independent of r ∈ (−∞,∞). We match to the outer expansion in the
regime where r = Φ/ε is large but Φ is small. This leads us to require

Z0(r)→ 1 as r → −∞, 0 as r →∞, (60)

and we satisfy (57) by taking Z0 = Z0(r) to be a domain wall independent
of x, t and centered so that Z0(0) = 1/2, say. From (57) we find Z0 satisfies

∂rZ0 = −
√

2G(Z0), Z0(0) = 1/2. (61)

Taking r → +∞ then −∞ in (59) now leads to the matching conditions

λ = J0(x,+∞, t) = ν · j+
0 = −∂νw

+
0 ,

v = J0(x,−∞, t)− λ = ∂νw
+
0 − ∂νw

−
0 .

At this point, equations (55) and (62) correspond respectively to (48)
and (49), and it remains to recover the equations (50)–(51) that govern the
attachment kinetics. From terms of order O(1) we need only observe that

W0 = ζ1(Z0)(−v ∂rZ0)− κ ∂rZ0 − ∂2
rZ1 +G′′(Z0)Z1. (62)

Since (−∂2
r +G′′(Z0))∂rZ0 = 0, we can say∫ ∞

−∞
(∂rZ0)(−∂2

r +G′′(Z0))Z1 dr = 0.

Thus, a necessary condition for the solvability of (62) for Z1 is that∫ ∞

−∞
(∂rZ0)(W0 + κ ∂rZ0 + vζ1 ∂rZ0) dr = 0.

Now, using (58) and (59) we compute

κ

∫ ∞

−∞
(∂rZ0)2 + v

∫ ∞

−∞
ζ1(∂rZ0)2 = −

∫ ∞

−∞
W0(∂rZ0) dr

= −[W0Z0]∞−∞ −
∫ ∞

−∞
(ζ2J0)Z0 = w−0 − v

∫ ∞

−∞
ζ2Z

2
0 − λ

∫ ∞

−∞
ζ2Z0,

and

w+
0 − w

−
0 =

∫ ∞

−∞
∂rW0 dr = −

∫ ∞

−∞
ζ2J0 = −v

∫ ∞

−∞
ζ2Z0 − λ

∫ ∞

−∞
ζ2.

By (62) and (62), and since G is normalized so that∫ 1

0

√
2G(z) dz =

∫ ∞

−∞
(∂rZ0)2 dr = 1,
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this yields the BCF equations

ζ+ ∂νw
+
0 = w+

0 − κ, (63)

−ζ− ∂νw
−
0 = w−0 − κ, (64)

provided the following hold:

ζ− =
∫ ∞

−∞
(ζ1(Z0)(∂rZ0)2 + ζ2(Z0)Z2

0 ) dr =
∫ ∞

−∞
ζ2(Z0)Z0 dr, (65)

ζ+ =
∫ ∞

−∞
ζ2(Z0)(1− Z0) dr. (66)

By changing variables using (61), these constraints can be written in the
form

ζ− =
∫ 1

0

(
ζ1(z)

√
2G(z) +

ζ2(z)z2√
2G(z)

)
dz =

∫ 1

0

ζ2(z)z√
2G(z)

dz, (67)

ζ+ =
∫ 1

0

ζ2(z)(1− z)√
2G(z)

dz. (68)

This completes the formal derivation. We point out that deriving the
Mullins-Sekerka sharp-interface model (41)–(43) from the Cahn-Hilliard
equation (40) is just a special case of the above, taking ζ1 = ζ2 = 0. A
rigorous justification of the sharp-interface limit in this case was given by
Alikakos, Bates, and Chen [1]. For work relating the Cahn-Hilliard equation
to the LSW model, see the recent paper [2] and the references therein.

3.2. Gradient structure for Mullins-Sekerka flow

For use below, here we explain (essentially following Niethammer & Otto
[39]) how the Mullins-Sekerka model can be described formally as gradient
flow for surface area with respect to a certain metric structure on a “man-
ifold” of smooth surfaces in R3. (We remark that for the closely related
problem of Hele-Shaw flow between parallel plates, this type of gradient
flow structure, as described by Otto [44], was exploited by Glasner [24] to
derive a corresponding diffuse-interface model in a very interesting manner.)

First, recall the general structure of gradient flow for an energy func-
tional E :M→ R whereM is a Riemannian manifold with metric g: A so-
lution trajectory is a curve t 7→ z(t) ∈M with tangent vector ∂tz ∈ Tz(t)M
that satisfies

gz(t)(∂tz, v) = −dE(z(t))v for all v ∈ Tz(t)M.
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Now, we considerM to be the “manifold” of smooth bounded surfaces
Γ that are boundaries of bounded domains in R3. Formally, elements of the
tangent space TΓM correspond to “normal velocity fields” v : Γ → R. We
define a “metric” on TΓM as follows: To each such v ∈ TΓM we associate
a harmonic “potential” u = T v : R3 → R by solvingb the PDE boundary
value problem

∆u = 0 in R3 \ Γ,

ν · ∇u+ − ν · ∇u− = −v on Γ,

u(x)→ 0 as |x| → ∞.

(Here ν is the unit outward normal to the domain enclosed by Γ, and u+, u−

are respective limits on Γ along ν from the outside and inside respectively.)
Given v1, v2 ∈ TΓM, let u1 = T v1 , u2 = T v2 and put

gΓ(v1, v2) =
∫

R3
∇u1∇u2 =

∫
Γ

u1 [n∇u2]
−
+ =

∫
Γ

u1v2 =
∫

Γ

v1u2 (69)

We let E(Γ) be the surface area of Γ. It is known that if Γ(t) is smoothly
evolving with normal velocity v(t), then

d
dt
E(Γ(t)) =

∫
Γ

κv =: dE(Γ)v,

where κ is the sum of principal curvatures of Γ (positive for spheres), and
the volume of the domain Ω(t) enclosed by Γ evolves by

d
dt

vol(Ω(t)) =
∫

Γ

v.

Mullins-Sekerka flow is gradient flow for surface area with enclosed
volume conserved. Let M0 be a submanifold of M corresponding to sur-
faces with fixed enclosed volume. Velocity fields v ∈ TΓM0 should satisfy∫
Γ
v = 0. Gradient flow requires that Γ(t) evolves so that its normal velocity

v satisfies

gΓ(v, ṽ) = −dE(Γ)ṽ, or
∫
uṽ = −

∫
Γ

κṽ, for all ṽ ∈ TΓM0.

bHow to do this technically: Let H = {u ∈ L6(R3)|∇u ∈ L2(R3)3} be a Hilbert space

with ‖u‖H = (
R
|∇u|2)1/2. H is complete due to a critical Sobolev embedding theorem.

Find u so

〈u, v〉H =

Z
R3

∇u · ∇w =

Z
Γ

vw for all w ∈ H.
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Since this holds for all smooth ṽ with
∫
Γ
ṽ = 0, we can infer that u =

−κ+ θ(t) on Γ(t), where θ(t) is constant in space. This yields the Mullins-
Sekerka motion law, since we have

∆(−u+ θ) = 0 in R \ Γ(t),

−u+ θ = κ on Γ,

v = [ν · ∇(−u+ θ)]+− on Γ.

Note that θ = lim|x|→∞(−u+ θ) is the “mean field,” the limit at infinity of
the harmonic function −u+ θ determined by the curvature of Γ(t).

3.3. Monopole models by restricted gradient flow of surface

energy

The morphology of domains coarsening according to Mullins-Sekerka flow
can be complex. Singularities may occur frequently through the shrinking
of small blobs to zero size, or the “pinch-off” of necks in dumb-bell shaped
regions, for example. When the minority phase occupies a small fraction
of a sample region, however, frequently the morphology seen is that of
a dilute suspension of approximately spherical domains. (Presumably one
sees spheres due to some sort of local minimization of surface area with
constrained enclosed volume).

This leads us to consider a geometrically simplified model in which the
evolving surface Γ is constrained to consist of a collection of spheres. As we
show below following S. Dai’s Ph.D. thesis [14], Mullins-Sekerka gradient
flow constrained geometrically to spheres exactly yields the classic monopole
model, in which the harmonic potential (diffusion field) u = T v is a super-
position of monopole fields 1/|x − xi|. The monopole model is important
due to the fact that it is amenable to large-scale simulation; computations
involving hundreds of thousands of spheres have been performed (taking
some shortcuts).

We restrict attention to a submanifoldMN of surfaces Γ consisting of a
collection of spheres Γi bounding a fixed number N > 0 of non-overlapping
balls Bi where |x−xi| < Ri, i = 1, . . . , N . We consider the centers xi ∈ R3

fixed, and fix total volume, so
∑
R3

i = Q is constant. The manifold MN

is N − 1 dimensional and each tangent vector v ∈ TΓMN corresponds to
a normal velocity field with v = vi = Ṙi constant on the sphere Γi where
|x− xi| = Ri.
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We will find u = T v explicitly as a superposition of monopoles:

u(x) =


N∑

j=1

aj

|x− xj |
, if |x− xj | ≥ Rj for all j,∑

j 6=i

aj

|x− xj |
+
ai

Ri
, if |x− xi| < Ri.

Evidently ∆u = 0 in R3 \Γ and u(x)→ 0 as |x| → ∞. The jump condition
on Γi reads [ν · ∇u]+− = −ai/R

2
i = −vi, hence we must have

ai = R2
i vi,

and consequently, ∑
ai = 0.

To describe how the vi = Ṙi are determined, we must show how the
monopole amplitudes ai can be determined from the sphere radii Ri by
solving a linear system of equations. Given a tangent vector ṽ ∈ TΓMN ,
we compute

gΓ(v, ṽ) =
∫

Γ

uṽ =
∑

i

∫
Γi

ṽi

∑
j

aj

|x− xj |

=
∑

i

4πR2
i ṽi

 ai

Ri
+
∑
j 6=i

ai

|xi − xj |

 ,

since by the mean value property of harmonic functions (∆(1/|x|) = 0),∫
Γi

1
|x− xj |

=
4πR2

i

|xi − xj |
.

For the surface area E =
∑

4πR2
i we can write

dE(Γ)ṽ =
∑

8πRiṽi =
∑

4πR2
i

(
2
Ri
ṽi

)
=
∫

Γ

κṽ.

Hence, gradient flow (gΓ(v, ṽ) = −dE(Γ)ṽ for all ṽ ∈ TΓMN ) means that

∑
i

4πR2
i ṽi

 2
Ri

+
ai

Ri
+
∑
j 6=i

ai

|xi − xj |

 = 0 whenever
∑

i

R2
i ṽi = 0.

Hence the term in parentheses must be independent of i, and we denote
it by θ̃(t). We now have N + 1 equations to determine N + 1 unknowns
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v1, . . . , vN and θ̃, namely:

R3
i vi +

∑
j 6=i

R2
iR

2
jvj

|xi − xj |
= R2

i

(
θ̃ − 2

Ri

)
,

∑
i

R2
i vi = 0. (70)

In matrix-vector form this reads:

A~v = θ̃~s−~b, ~s · ~v = 0,

with si = R2
i , bi = R2

i (θ̃ − 2/Ri). The matrix A is symmetric and positive
definite since

~v ·A~v =
gΓ(v, v)

4π
> 0.

The solution can be expressed in the form

~v = θ̃A−1~s−A−1~b, θ̃ =
~s ·A−1~b

~s ·A−1~s
.

This completes the derivation of the monopole model:

∂tRi = vi(~R).

This equation applies up to a time when one or more particle radii vanish
(Ri → 0), after which the system is continued with fewer particles, or until
particles collide.

An advantage of this derivation of the monopole model by restricted
gradient flow is that it shows that the velocities Ṙi in the monopole model
are well-defined as long as the balls Bi are non-overlapping. Moreover, the
derivation shows how the velocities can be determined in terms of a positive
definite matrix; this apparently has not been recognized before and could
be useful in numerical computations.

3.4. Lifshitz-Slyozov-Wagner mean-field model

The first quantitative explanation of the t1/3 power-law growth of typi-
cal domain size observed during Ostwald ripening was provided by work
of Lifshitz and Slyozov [31] and Wagner [50], based upon arguments in-
volving self-similar behavior for a Liouville equation governing the particle
size distribution in a regime where all the interactions of particles are sub-
sumed in one mean-field coupling term. In this subsection we describe this
LSW model and indicate how recent rigorous analysis has clarified the fact
that the self-similar nature of experimentally observed size distributions is
not completely explained by the mean-field model, and must depend upon
factors not taken into account by it.



36 Robert L. Pego

In order to derive the LSW model, we look at at the dilute limit in which
the typical particle radius Ri is very small compared to the interparticle
distances |xi−xj |. Replacing xi by x̄xi and letting x̄→∞, the off-diagonal
terms in the system vanish (A→ diag(R3

i )), and we are left with the system

R3
i vi = R2

i

(
θ̃ − 2

Ri

)
,

that is,

∂tRi =
1
Ri

(
θ̃ − 2

Ri

)
.

Since
∑
R2

i ∂tRi = 0, the mean field θ̃ is determined by

θ̃ =
∑

2∑
Ri

=
2
Rav

,

where Rav =
∑
Ri/N is the average particle radius.

For later reference, we note that the metric gΓ degenerates to diagonal
form and the surface area decays as follows: Using that

∑
4πR2

i vi = 0,

dE
dt

=
∑

8πRivi =
∑

4πR2
i

(
2
Ri
− θ̃
)
vi = −4π

∑
R3

i v
2
i = −gΓ(v, v).

Coarsening proceeds according to the LSW model in the following way.
Particles larger than average grow, and ones smaller than average shrink:
If Ri > Rav then ∂tRi > 0; if Ri < Rav then ∂tRi < 0. Very small particles
will vanish in a finite time: If the smallest particle is the ith and Ri is small,
then ∂tR

3
i ∼ −6, and R3

i ∼ 6(Ti − ti) where Ri(Ti) = 0. Beyond this time
the system continues with fewer particles.

Theory of Lifshitz & Slyozov and Wagner. The arguments of LSW
to explain t1/3 growth of typical particle size involve writing a Liouville (or
Fokker-Planck) equation for the size distribution function. We set

ϕ(R, t) =
# of particles of radius ≥ R

# at t = 0
.

Since particle radii satisfy

∂tR = V (R, t) :=
1
R

(
θ̃ − 2

R

)
, (71)

and this ODE preserves the order of particle sizes, conservation of particles
implies ϕ satisfies a PDE:

d
dt
ϕ(R(t), t) = ∂tϕ+ V (R, t)∂Rϕ = 0. (72)
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In terms of a number density n(R, t) for the size distribution, we have

ϕ(R, t) =
∫ ∞

R

n(s, t) ds,

and the governing equation is written as a conservation law,

∂tn+ ∂R(V (R, t)n) = 0. (73)

This is the LSW mean-field model. (For rigorous derivations of such PDE
models from monopole models, see [37, 38, 39].) Conservation of total vol-
ume means that Q =

∫∞
0
R3n(R, t) dR is constant and leads to

θ̃(t) =
2
∫
n dR∫

RndR
=

2
Rav(t)

.

Scaling and self-similarity. The particle growth law (71) has the scaling
invariance R = λR′, t = λ3t′. If the solution of (73) achieves scale invariant
form, so that

n(R, t) = λpn(λR, λ3t),

then we must have p = 4, since

Q =
∫
R3n(R, t) dR =

∫
R3λpn(λR, λ3t) dR = λp−3−1

∫
R′3n(R′, t′) dR′.

Thus, a scale-invariant solution should take the self-similar form

n(R, t) = t−4/3F (R/t1/3).

Now one has the questions: Can we expect to see this? And what should F
be?

The equation actually admits a one-parameter family of self-similar so-
lutions. Lifshitz & Slyozov argued as follows to explain that F should have
a particular explicit form that is smooth with bounded support. Change
variables, normalizing radius by its average, and introduce

ρ =
R

Rav
, τ = logR3

av.

Then ∂tR
3 = 6(ρ− 1) = (∂tR

3
av)(ρ

3 + ∂τρ
3), and we get

∂τρ
3 = γ(ρ− 1)− ρ3 (74)

with γ = γ(τ) = 6/(∂tR
3
av). Expecting the system to settle into a self-

similar regime, we expect γ(t)→ γ∞. This means that for large t,

R3
av ∼ ct, with c = 6/γ∞.
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One argues that γ∞ = 27
4 (meaning c = 8/9, which differs from the classic

4/9 only due to the factor 2 in (71)) based on the dynamics of (74): If γ∞ is
smaller, then the right-hand side is everywhere negative and ρ becomes zero
in finite time for all particles, contradicting total volume conservation. If
γ∞ is larger, then (74) admits two equilibria, a stable ρ2 above an unstable
ρ1. Self-similar solutions having bounded support exist in this case, but
LSW argue they are unstable. Presuming some fraction of particle sizes lie
above the unstable ρ1 means their ρ will approach ρ2 as t becomes large
and this leads to growth of total volume, again contradicting conservation.

Non-self-similar behavior. These arguments of LSW are mathemat-
ically nonrigorous, but are physically precise and plausible and sparked a
great deal of activity to investigate the predictions. It is fair to say the LSW
analysis served as a paradigm for a range of related problems in materi-
als science and solid state physics. Certain difficulties dogged the theory,
however, especially the facts that observed size distributions are always
broader than the predicted one, and that the assumption that the system
is sufficiently dilute is never satisfied in real systems.

Rather recently, several groups of investigators [23, 12, 40] came to un-
derstand that solutions of mean-field LSW models such as (73) need not ex-
hibit universal self-similar behavior, meaning perhaps that the LSW model
lacks some feature of experimental systems which leads to observed self-
similarity. A basic explanation is based upon equation (72). Evolution un-
der this equation simply stretches the graph of ϕ according to the solution
map R(0) 7→ R(t) for the characteristic equation (71). This map is smooth
(analytic, in fact), and thus for finite time it produces a smooth distortion
of the initial distribution function.

Suppose the system initially has a maximal particle size R∗, so that
initially ϕ(R, 0) = 0 on (R∗,∞) (maximal). The detailed way in which
ϕ(R, 0) vanishes near the end of support will be qualitatively preserved for
finite time. Niethammer & Pego [40] proved two facts for (72):

(1) If there exist c > 0 and p > 0 such that initially

ϕ(R∗ − r, 0) ≥ crp,

then the rescaled solution cannot approach LSW’s self-similar solution
as t→∞.

(2) A necessary condition for the solution to approach some self-similar
solution as t→∞ is that the initial distribution is “almost power-law”
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near the maximal particle size. Namely,

ϕ(R∗ − r, 0) ∼ rpL(r)

as r → 0+ for some p ≥ 0 and some function L slowly varying near
zero. (Recall this means limt→0 L(tx)/L(t) = 1 for all x > 0.)

The condition in (2) says that r 7→ ϕ(R∗ − r, 0) is regularly varying at
0 with exponent p. This is the condition that figures in the necessary and
sufficient conditions of the Tauberian theorem [19] and the rigidity lemma
for scaling limits. Entire books have been written about it due to its im-
portance in analysis and probability theory [6, 49]. In section 5 below we
will show that regular variation is key for obtaining necessary and suffi-
cient conditions to classify domains of attraction for self-similar behavior
in Smoluchowski’s coagulation equations.

Comments on analysis. Without getting into technical details, it is
interesting to note that physical and structural considerations have some
important consequences for the rigorous mathematical analysis of the LSW
model. In the form (73) the model takes the form of a PDE conservation
law as one has in shock wave theory. However, it is unwise to look to shock-
wave theory for an appropriate topology to study the well-posedness of the
initial-value problem. Instead, an appropriate topology that is physically
meaningful should make it “difficult” to create large particles from nothing.
On the other hand, small changes in particle size should be “easy,” even
if the size distribution is highly peaked like a Dirac mass. Mathematically,
one would ideally like to allow arbitrary size distributions, which means
arbitrary probability measures after normalization by number.

Looking back at (72), it is rather more natural to regard particle size as
the actively evolving dependent variable, and describe the size distribution
by inverting the map R 7→ ϕ, regarding R as a function of ϕ ∈ [0, 1], the
initial particle “rank.” The equation of evolution is just (71). The sup-norm
distance between particle rankings corresponds to a transport metric called
the L∞ Wasserstein distance between probability distributions. (This is
the minimal maximum size change needed to change one distribution to
the other.) Based on this topology (in terms of volume v = R3), well-
posedness of the LSW initial-value problem was proved in [41], with size
distribution allowed to be an arbitrary probability distribution of compact
support. Also, computations are best based on (71) rather than (73). For
this model, it is much easier to attain high accuracy for long times follow-
ing characteristics than with shock-capturing schemes. Over many years,
a good number of investigators computing solutions numerically from (73)
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determined (erroneously, as it turned out) that solutions always approached
the smooth LSW form.

The restriction of compact support was removed in [42] using a gradient
flow structure that the LSW model inherits from the (discrete) monopole
model (despite the fact that (73) is a first-order PDE). The dissipation iden-
tity associated with this structure provides a compactness property useful
for establishing the existence of solutions for any initial size distribution
that is a probability measure giving finite expected volume.

4. Rigorous power-law bounds on coarsening rates—the
Kohn-Otto method

The scientific achievement of Lifshitz and Slyozov and Wagner in produc-
ing an explanation for the t1/3 power-law behavior for typical domain size
in coarsening by phase separation was considerable; they spawned a large
related literature that continues to expand rapidly. The LSW mean-field
theory, however, is based upon a quite restrictive set of physical assump-
tions. In particular, the minority phase must be extremely dilute, and the
particles spherical. These assumptions naturally fail in practical situations
in metallic alloys with comparable phase fractions and anisotropy. So one
hopes for a more general explanation.

Power-law heuristics. A general but vague idea is that power-law
behavior is due to some kind of statistical self-similarity based on a sim-
ple scaling invariance principle. For example, consider the Mullins-Sekerka
interface motion law:

∆w = 0 in Ω(t), w = κ on Γ(t) = ∂Ω, V =
∂w+

∂ν
− ∂w−

∂ν
on Γ(t).

Changing scale according to x = Lx̃, t = T t̃, w = Aw̃ yields

A

L2
∆w = 0, Aw̃ =

1
L
κ̃,

L

T
Ṽ =

A

L

(
∂w̃+

∂ν̃
− ∂w̃−

∂ν̃

)
.

This yields a solution of the original system if A = 1/L and L3 = T .
Suppose one observes a system undergoing coarsening and plots a length
scale l vs. time t, so l = f(t). Changing scale via l̃ = l/L, t̃ = t/T , one
plots l̃ = f(T t̃)/T 1/3 = f̃(t̃). If the behavior of the system is independent
of scale (and this concept is very ill-defined for a system with complex
morphology), then we can expect that f = f̃ , and hence, putting t̃ = 1 we
get f(T ) = T 1/3f(1). This produces the power-law behavior l = ct1/3.
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Method of Kohn and Otto. Recently, a new and rigorous method
for explaining power-law behavior was created by Kohn and Otto [27]. The
method promises to be rather robust, as it depends only upon a few gross
features of the system being considered. It produces time-averaged power-
law bounds on the decay of a normalized energy E(t) of the system. These
bounds are:

• universal—they apply to every solution.
• one-sided—slower coarsening is possible (the solution can get ‘stuck’ at

unstable equilibria, for example), but faster coarsening is impossible.
• independent of system complexity (size; morphology of patterns).
• independent of statistical assumptions about the system.

In many of the problems treated so far by the method [28, 29, 30] the
power-law bounds are expected to be typical, as suggested by the heuristic
scaling arguments. (At this time, an exception is that the t−1/3 bounds
achieved for a certain mound formation model with anisotropic surface
energy having square symmetry do not correspond to the t−1/4 behavior
seen in simulations [35, 51]. )

With regard to the last bullet above, it is interesting to note that no
sort of statistical self-similarity is presumed. In fact, an experimental indi-
cation of the significance of this appears recently in work of Voorhees and
co-workers [32]. This group experimentally studied 3D coarsening of domain
structures in metallic alloys. They observed t−1/3 decay of surface energy
over a long range of times where statistics show that morphology and curva-
ture distributions are evolving in a non-self-similar manner. Thus it appears
that power-law energy decay is not necessarily indicative of scale-invariant
structural behavior.

4.1. Basic inequalities

In these notes we will explain the Kohn-Otto method and apply it to the
LSW mean-field model and to the monopole model. The essence of the argu-
ment involves the consequence of two inequalities that relate a normalized
energy E(t) and a dual quantity L(t) that loosely characterizes a “length
scale” for the system. (It is worth mentioning, though, that an even simpler
approach works for the mound coarsening problem treated by Li and Liu
in [30].)
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Lemma 2: Suppose that for all t > 0, the functions E(t) and L(t) satisfy

EL ≥ 1 and L̇2 ≤ −Ė(t), (75)

and suppose E is strictly decreasing. Then, with α1 = 1
6 and α2 = 16 we

have ∫ T

0

E(t)2 dt ≥ α1

∫ T

0

(t−1/3)2 dt for all T ≥ α2L
3
0. (76)

Proof: 1. Since E is strictly decreasing, we may say L(t) = l(ε), where
ε = E(t). Then(

dL
dt

)2

=
(

dl
dε

dE
dt

)2

≤ −dE
dt

implies
(

dl
dε

)2(
−dE

dt

)
≥ 1.

Multiplying by E(t)2 and integrating, we get

f(T ) :=
∫ T

0

E(t)2dt ≥
∫ T

0

E2

(
dl
dε

)2(
−dE

dt

)
dt =

∫ E0

ET

ε2
(

dl
dε

)2

dε.

2. Next, we fix T and minimize over l(ε): Write l = l̂ + l̃, where

l̃ = 0 at ε = ET and E0, l̂ = l = L0 at E0, LT at ET .

Then∫ E0

ET

ε2(∂ε(l̂ + l̃))2 dε =
∫ E0

ET

ε2((∂ε l̂)2 + (∂ε l̃)2)− 2l̃∂ε(ε2∂ε l̂) dε.

Choose l̂ such that ∂ε(ε2∂ε l̂) = 0, requiring ε2∂ε l̂ = Ĉ constant (< 0). Then

L0 − LT =
∫ E0

ET

dl
dε

dε = Ĉ

∫ E0

ET

ε−2 dε = Ĉ(E−1
T − E−1

0 ).

Now it follows

f(T ) ≥
∫ E0

ET

Ĉ

(
dl
dε

)
dε = Ĉ(L0 − LT ) =

(LT − L0)2

(E−1
T − E−1

0 )
,

consequently

f(T ) ≥ ET (LT − L0)2.

3. Next, observe that

f ′(T ) = E2
T ≥

1
LT 2

, f ′(T )f(T )2 ≥ E4
T (LT − L0)4 ≥

(
1− L0

LT

)4

.

The value LT is either large or small:
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- If LT ≥ 2L0, then f ′f2(T ) ≥ ( 1
2 )4 = 1

16 .

- If LT ≤ 2L0, then f ′(T )L2
0 ≥ 1

4 .

Hence for all t,

d
dt

(
f3

3
+
fL2

0

4

)
≥ 1

16
,

and thus
f(T )3

3
+
f(T )L2

0

4
≥ T

16
.

4. We finish as follows. Let f = L0F , then L3
0(

1
3F

3 + 1
4F ) ≥ 1

16T. Hence,
if T ≥ 16L3

0 it follows F 2 ≥ 3
2 , since F 2 < 3

2 leads to a contradiction:

F 3

3
+
F

4
< F

(
1
2

+
1
4

)
<

√
3
2

3
4
< 1 ≤ T

16L2
0

.

Then if T ≥ 16L3
0 we infer 1

2F
3 ≥ 1

3F
3 + 1

4F , therefore 1
2f

3 ≥ 1
16T. Thus∫ T

0

E(t)2dt ≥ T 1/3

2
=

1
6

∫ T

0

(t−1/3)2dt.

4.2. Bounds on coarsening rates for the LSW mean-field

model

Kohn and Otto applied their method to two variants of the Cahn-Hilliard
equation in [27]. The method was applied to LSW mean-field models in
[15], but Barbara Niethammer has suggested the following argument which
exploits the gradient structure of the equations and is very simple.

Suppose we have a collection of spheres of radius Ri coarsening accord-
ing to the mean-field law

∂tRi = vi =
1
Ri

(
θ̃ − 2

Ri

)
.

Normalize total volume volume so
∑
R3

i = 1. We take

E =
∑

i

4πR2
i , L =

∑
i

R4
i

4π

as energy (total surface area) and “length scale” respectively (normalized
by volume). Then by Cauchy-Schwartz we obtain the “interpolation in-
equality”

1 =
(∑

R3
i

)2

≤
(∑

R2
i

)(∑
R4

i

)
= EL.
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The idea to obtain a dissipation inequality is that −Ė = gΓ(v, v), coming
from the gradient structure of the model. We write

−Ė = −
∑

8πRiṘi =
∑

4πR2
i

(
θ̃ − 2

Ri

)
Ṙi = 4π

∑
R3

i Ṙ
2
i .

Then

(L̇)2 =

(∑ R3
i Ṙi

π

)2

≤
(∑

R3
i

)(∑
R3

i Ṙ
2
i

)
≤ −Ė.

Then we simply apply the Lemma to obtain time-averaged bounds on the
coarsening rate, universally valid for any size distribution of spheres:∫ T

0

E(t)2 dt ≥ 1
6

∫ T

0

(t−1/3)2 dt for T ≥ 16L2
0.

The same calculation can be made for the Lifshitz–Slyozov conservation
law:

∂tn(R, t) + ∂R(V n) = 0, V (R, t) =
1
R

(
θ̃ − 2

R

)
,

using the characteristic map R̂(r, t) satisfying

∂tR̂ = V (R̂, t), R̂(r, 0) = r,

and the fact that n(R, t) dR = n0(r) dr with R = R̂(r, t). We omit the
details.

4.3. Bounds on coarsening rates for the monopole model

As discussed above, the monopole model is important because of its status
as a model of multi-dimensional coarsening for which extensive computer
simulations are feasible and have been carried out. The spatial distribution
of particle positions affects coarsening dynamics in ways that are not well
understood; presumably correlations develop between neighboring particles
in a time-dependent fashion. As we now show, however, it is not difficult to
establish a basic power-law bound on the coarsening rate using the Kohn-
Otto method.

We recall that Ṙi = vi, where

R3
i vi +

∑
i 6=j

R2
iR

2
jvj

|xi − xj |
= R2

i

(
θ̃ − 2

Ri

)
,

∑
R2

i vi = 0.
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Note that the field u = T v satisfies

∆u = 0 in R \ Γ, [n · ∇u]+− = v on Γ, u→ 0 as |x| → ∞, (77)

and that ∫
Γ

(u+ κ)ṽ = 0 for all ṽ with
∫

Γ

ṽ = 0.

Again, the surface area (surface energy) E =
∑

i 4πR2
i =

∫
Γ

1 satisfies

−Ė = −
∑

8πRiṘi =
∑

4πR2
i

(
− 2
Ri
vi

)
=
∫

Γ

−κv =
∫

Γ

uv =
∫

R3
|∇u|2 = gΓ(v, v).

We use a rather fancy “length scale” L determined by

L2 =
∫

R3
|∇Ψ|2, where −∆Ψ = 1∪Bi ,

meaning −∆Ψ = 1 on the union of balls ∪iBi and 0 on the complement.
The function Ψ is a superposition Ψ =

∑
Ψi, where by scaling,

Ψi(x) = φ

(
|x− xi|
Ri

)
R2

i .

The function φ satisfies −(∂2
r + 2

r∂r)φ = 1r<1, and is given by

φ(r) =
1
2
− 1

6
r2 for r < 1,

1
3r

for r > 1.

(Note ∂rφ = −1/3 at r = 1±.) Thus

Ψi =
R2

i

2
− r2

6
for r = |x− xi| < Ri,

R3
i

3r
for r > Ri.

We notice that

Ψ̇i = RiṘi for r < Ri,
R2

i Ṙi

r
for r > Ri,

hence

∆Ψ̇ = 0 in R \ Γ,
[
n · ∇Ψ̇

]+
−

= −Ṙi on Γi, Ψ̇(x)→ 0 as |x| → ∞.

Comparing with (77) we see that Ψ̇ = u = T v. By consequence, we get the
dissipation inequality as follows:

(LL̇)2 =
(∫

R3
∇Ψ · ∇Ψ̇

)2

≤
∫

R3
|∇Ψ|2

∫
R3
|∇Ψ̇|2 = L2

∫
R3
|∇u|2 = L2(−Ė).
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Hence (L̇)2 ≤ −Ė.
We prove the interpolation inequality EL ≥ 1 by using an explicit ex-

pression for L2 obtained as follows:

L2 =
∫

R3
Ψ(−∆Ψ) =

∫
∪Bi

Ψ =
∑
i,j

∫
Bi

Ψj

We evaluate the integrals using scaling for i = j and the mean value prop-
erty for the harmonic function Ψj on Bi for i 6= j:

∫
Bi

Ψi = R2+3
i

∫ 1

0

(
1
2
− r2

6

)
4πr2 dr = R5

i

8π
15
,

∫
Bi

Ψj =
4π
3
R3

i Ψj(xi) =
4π
3

R3
iR

3
j

3|xi − xj |
.

Hence

L2 =
∑

i

8π
15
R5

i +
∑
j 6=i

4π
3

R3
iR

3
j

3|xi − xj |
≥
∑

i

8π
15
R5

i . (78)

Normalizing so that
∑
R3

i = 1, we get

1 =
∑

R3
i =

(∑
R

4
3
i R

5
3
i

) 3
2
≤
(∑

R2
i

)(∑
R5

i

) 1
2

by Hölder’s inequality with p = 3
2 , q = 3 (p−1 + q−1 = 1). Hence EL ≥ 1.

Now applying the ODE lemma yields

∫ T

0

E(t)2 dt ≥ 1
6

∫ T

0

(t−1/3)2 dt for all T ≥ 16L3
0.

This estimate provides a power-law bound on energy dissipation with the
exponent one expects physically. We remark, however, that the inequality
(78) is likely to be quite pessimistic in dense systems, and so one might
hope for improvements regarding the prefactor or time of validity.
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5. Smoluchowski’s coagulation equations

5.1. Introduction

A simple mean-field model of coarsening by coalescence leads to Smolu-
chowski’s coagulation equations. Particles or clusters of size x and size y
combine at a rate proportional to the population of each and a rate kernel
K(x, y). Schematically, the number of particles of size x is affected by the
processes

[x] + [y]→ [x+ y], [x− y] + [y]→ [x].

One writes a mean-field rate equation for the number density n(x, t) in the
form

∂tn(x, t) =
1
2

∫ x

0

K(x−y, y)n(x−y, t)n(y, t) dy−
∫ ∞

0

K(x, y)n(x, t)n(y, t) dy.

(79)
Perhaps due to its simplicity, this model has found an amazingly diverse
set of applications over a vast range of scales. It has been used to study
microdroplet formation (in clouds, ink fog, smoke, fuel, paint, etc.), the ki-
netics of polymerization, hashing algorithms, and the clustering of colloids,
phytoplankton in “marine snow,” planetesimals in stellar accretion disks,
and stars themselves. Much scientific effort has gone into determining ap-
propriate rate kernels K(x, y) for different physical models. For simplicity,
here we will only consider the constant kernel K = 2, for which we can get
a solution formula via the Laplace transform.

Since particles only combine, one expects the size distribution to shift
toward larger particles and the typical particle size to grow in time. So
one must rescale size to observe nontrivial long-time dynamical behavior.
Equation (79) has the scaling invariance that if n(x, t) is a solution, then
so is

ñ(x, t) = an(bx, ct)

provided a = bc.

5.2. A ‘new’ framework for dynamic scaling analysis

An issue of considerable significance in applications is whether typically the
size distribution will approach a scale-invariant form, for which ñ = n. This
is a self-similar solution or scaling solution for short.

In these notes we will study this question within a larger framework
for understanding dynamic scaling behavior that has been outlined in the
paper [33]. The basic issues are:
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(i) What scaling solutions exist?
(ii) What are their domains of attraction?
(iii) What are the most general scaling limit points?

(These comprise the “scaling attractor.”)
(iv) How can we describe the dynamics on the set of limit points?

(This is arguably the “ultimate dynamics” of the system.)
(v) How complicated can the ultimate dynamics be?

Though evidently stated in dynamical terms, this framework is strongly
motivated by classical results in probability theory that date back to the
1920s, involved with establishing necessary and sufficient conditions for
convergence in the central limit theorem. The issue concerns scaling limits
of sums Sn =

∑n
j=1Xj of independent and identically distributed random

variables, as n → ∞. The whole theory is beautifully exposed in Feller’s
great book [19], and provides complete answers to the questions in the
framework above:

• The normal distribution is the unique scale-invariant distribution of
finite variance. But more generally the class of scale-invariant distrib-
utions make up a two-parameter family of (heavy-tailed) distributions
called the Lévy stable laws.
• The normal distribution attracts all distributions of finite variance.

But in general, simple necessary and sufficient conditions for a scaling
limit to exist are known in terms of the power-law behavior (regular
variation, to be precise) of the second-moment distribution function.
• The most general scaling limits that can arise for some subsequence
nj →∞ are the infinitely divisible distributions. These form an infinite-
dimensional family parametrized by the famous Lévy-Khintchine rep-
resentation formula in terms of a measure satisfying certain finiteness
conditions.
• There exist distributions (Doeblin’s universal laws) for which every pos-

sible scaling limit is realized along some subsequence. This is a hallmark
of chaos—sensitive dependence on initial conditions.

The analytical methods used to establish these classical limit theorems
are not essentially probabilistic in nature. Rather, they appear to be natural
tools for analyzing scaling dynamics in many problems. For Smoluchowski’s
equation with K = 2, the results that we will (mostly) prove here are stated
informally as follows (see [34, 33]):
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• We find a unique scale-invariant solution with finite number
∫∞
0
n dx

and mass
∫∞
0
xn dx . But there is a one-parameter familiy of infinite-

mass self-similar solutions, with profiles given by Mittag-Leffler proba-
bility distribution functions.
• Solutions approach self-similar form as t → ∞ if and only if initially
x 7→

∫ x

0
yn dy is almost power-law—regularly varying at ∞.

• The scaling attractor (set of subsequential scaling limits) can be para-
metrized by measures satisfying certain finiteness conditions.
• The nonlinear dynamics on the scaling attractor is linearized in terms

of this measure representation.
• This ultimate dynamics exhibits sensitive dependence on initial data.

These results are strikingly analogous to those of classical probability
theory. For well-localized data (finite mass), there is one universal scaling
behavior, analogous to the central limit theorem. For many physical ap-
plications this is the most relevant case. However, one can study scaling
dynamics in a more general context, and there one finds a rich set of math-
ematical possibilities. These should not be dismissed as uninteresting, given
the wide range of applications of Smoluchowski’s model. Heavy-tailed distri-
butions have come to be important in numerous applications of probability,
for example.

5.3. Solution by Laplace transform

The rigorous study of solutions of the coagulation equation (79) begins with
the general moment identity

∂t

∫ ∞

0

a(x)n(x, t) dx =
1
2

∫ ∞

0

∫ x

0

a(x)n(x− y, t)n(y, t)K(x− y, y) dy dx

−
∫ ∞

0

∫ ∞

0

a(x)n(x, t)n(y, t)K(x, y) dy dx

=
1
2

∫ ∞

0

(a(x+ y)− a(x)− a(y))n(x, t)n(y, t)K(x, y) dxdy. (80)

Taking a = x formally yields conservation of total mass:

∂t

∫ ∞

0

xn(x, t) dx = 0.

For K = 2, the total number N(t) =
∫∞
0
n(x, t) dx satisfies ∂tN = −N2.

We will normalize and scale x and t so that we always have

N(t) =
1
t
. (81)
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Next take a(x) = 1− e−qx. Since a(x+ y)− a(x)− a(y) = −a(x)a(y), with

φ(q, t) =
∫ ∞

0

(1− e−qx)n(x, t)dt, (82)

a quantity related to the Laplace transform of n, we have the simple equa-
tion

∂tφ = −φ2. (83)

Note that

φ(0, t) = 0, φ(∞, t) = N(t) =
1
t
, ∂qφ =

∫ ∞

0

e−qxxn(x, t) dx. (84)

Since ∂t(1/φ) = 1, for t, t0 > 0 we obtain the solution formulae

1
φ(q, t)

− 1
φ(q, t0)

= t− t0, φ(q, t) =
φ(q, t0)

1 + (t− t0)φ(q, t0)
. (85)

This solution formula serves as the basis for a theory of the initial-
value problem for which the size distribution n(x, t) dx = νt( dx) is a finite
measure on (0,∞) which initially can be completely arbitrary, subject to
the normalization ∫ ∞

0

νt0( dx) =
1
t0
. (86)

Let us sketch how this works. First, look for solutions that are lattice mea-
sures, of the form

νt( dx) =
∞∑

j=1

cj(t)δ(x− j∆x)

where δ(x−j∆x) is a Dirac mass at j∆x. With initially
∑∞

j=1 cj(t0) = 1/t0,
solve the discrete equations

∂tcj =
j−1∑
k=1

cj−kck∆x− 2cjN(t) (87)

inductively for j = 1, 2, . . . , with N(t) = 1/t. Then prove that
∞∑

j=1

cj(t) ≤
1
t

for all t ≥ t0.

(Hint: NJ(t) =
∑J

j=1 cj(t) satisfies ∂t(NJ − N) ≤ (NJ − N)2, NJ(t0) −
N(t0) ≤ 0.) Integrate (87) in t and apply the Laplace transform to deduce
that the function φ(q, t) =

∫∞
0

(1− e−qx)νt( dx) satisfies

φ(q, t) = φ(q, t0) +
∫ t

t0

φ(q, s)2 ds.
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This implies (85), and we infer that t 7→ νt is weakly continuous in the sense
of measures by the continuity theorem for Laplace transforms. In general,
we approximate a general measure νt0 by lattice measures as above. We
pass to limits using the continuity theorem for Laplace transforms together
with (85):

ν∆x
t0 → νt0 ⇔ φ∆x

0 (q)→ φ(q, t0) for all q > 0

⇔ φ∆x(q, t)→ φ(q, t) for all q ≥ 0, t ≥ t0

We obtain existence and uniqueness, and solutions depend continuously on
initial data with respect to weak convergence. Also, initial data depend
continuously on the solution! See [34] for discussion of a precise sense in
which this yields a weak solution of Smoluchowski’s equation. The upshot
is that for any measure νt0 on (0,∞) satisfying (86) with t0 > 0, there is a
unique measure solution defined for all t ≥ t0, meaning a weakly continuous
map t 7→ νt such that for t ≥ t0, νt is a finite measure on (0,∞) such that
φ(q, t) =

∫∞
0

(1− e−qx)νt( dx) satisfies (85).

5.4. Scaling solutions and domains of attraction

Based upon the solution of the coagulation equation by Laplace transform,
a complete classification of scaling solutions and their domains of attraction
was worked on in [34] for K = 2, x + y and xy. For K = 2, all nontrivial
scaling limits can be classified as follows.

Theorem 3: Take t0 = 1 and suppose νt is a measure solution of Smolu-
chowski’s equation, so that (85) holds, and introduce the probability dis-
tribution function

Ft(x) =
∫ x

0

νt( dx)
/∫ ∞

0

νt( dx) (= t

∫ x

0

n(y, t) dy).

(i) Suppose that there exists λ(t) → ∞ and a probability distribution F∗
so that

Ft(λ(t)x)→ F∗(x) as t→∞ (88)

at all points of continuity, where F∗(x) < 1 for some x > 0. Then,∫ x

0

yν1( dy) ∼ x1−ρL(x) as x→∞ (89)
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for some ρ ∈ (0, 1] and L slowly varying at ∞.
(ii) Conversely, suppose that (89) holds. Then (88) holds, with

F∗ = Fρ(x) =
∞∑

k=1

(−1)k+1xρk

Γ(1 + ρk)
,

a Mittag–Leffler distribution, whose Laplace transform is

LFρ(q) =
∫ ∞

0

e−qxFρ( dx) =
1

1 + qρ
.

Remark 4: Finite mass ∫ ∞

0

xν1( dx) <∞

gives ρ = 1, and F1(x) = 1− e−x corresponding to

n(t, x) =
1
t2

e−x/t.

This is an analog of the central limit theorem in probability theory. The
Mittag-Leffler distributions Fρ for 0 < ρ < 1 have infinite mass and are
analogs of the (heavy-tailed) Lévy stable laws of probability theory.

Proof: The strategy of the proof is to use the rigidity property of scaling
limits, and the Tauberian theorem (mentioned in the Background section
above). Assume, as in the statement of the theorem, that there exists λ(t)→
∞ and a nontrivial probability distribution F∗ so that

Ft(λ(t)x)→ F∗(x) as t→∞,

at all points of continuity. By the continuity theorem for Laplace transforms,∫ ∞

0

e−qxFt(λ(x) dx)→
∫ ∞

0

e−qxF∗( dx) = LF∗(q) for all q > 0.

In terms of φ and φ1(q) := φ(q, 1), this means that for all q > 0,

1− tφ(q/λ, t) = 1− tφ1(q/λ)
1 + (t− 1)φ1(q/λ)

→ LF∗(q) ∈ (0, 1).

Therefore, for all q > 0,

tφ1(q/λ(t))→ g(q) ∈ (0,∞) as t→∞.

By the rigidity property for scaling limits, we must have g(q) = cqρ for
some c > 0, 0 ≤ ρ <∞. Then

LF∗(q) = 1− cqρ

1 + cqρ
=

1
1 + cqρ

.
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Since F∗(∞) = LF∗(0+) = 1, we have ρ > 0. Since −∂qLF∗ =∫∞
0

e−qxxF∗( dx) is positive decreasing, we have ρ ≤ 1.
By scaling λ(t), we can achieve c = 1. Moreover, the rigidity property

implies

φ1(q) ∼ qρL̃(1/q) as q → 0+,

for some L̃ slowly varying at ∞. By the Tauberian theorem, the result∫ x

0

yν1( dy) ∼ x1−ρL(x) as x→∞

is equivalent to

∂qφ1(q) =
∫ ∞

0

e−qyyν1( dy) ∼ qρ−1L(1/q)Γ(2− ρ), as q → 0+.

The proof (in both directions) is finished with the use of the following
lemma.

Lemma 5: The following are equivalent.

(1) φ1(q) ∼ qρL̃(1/q) as q → 0+.
(2) φ′1(q) ∼ ρqρ−1L̃(1/q) as q → 0+.

Proof: We first show that (1) ⇒ (2). Since φ′′1 = −
∫∞
0

e−qyy2ν1( dy) < 0,
we have that for fixed a > 1,

φ′1(q) ≥
φ1(aq)φ1(q)
aq − q

=
(aq)ρL̂(aq)− qρL̂(q)

q(a− 1)
= qρ−1L̂(q)

aρL̂(aq)/L̂(q)− 1
a− 1

and L̂(q) = φ1(q)/q ∼ L̃(1/q). Hence (take a→ 1)

lim inf
q→0

φ′1(q)
qρ−1L̂(q)

≥ aρ − 1
a− 1

→ ρ.

Similarly, for fixed a < 1, we get

lim sup
q→0

φ′1(q)
qρ−1L̂(q)

≤ aρ − 1
a− 1

→ ρ.

In order to show that (2)⇒ (1), let L̂(q) = φ′1(q)/ρq
ρ−1 ∼ L̃(1/q). Then

φ1(q) =
∫ q

0

φ′1(s) ds =
∫ q

0

ρsρ−1L̂(s) ds = qρL̂(q)
∫ 1

0

ρxρ−1 L̂(qx)
L̂(q)

dx,
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where in the last equality, we changed variables according to s = qx. We
know

L̂(qx)
L̂(q)

→ 1, for all x > 0,

and we also need the fact (not difficult to prove) that L̃(x) ≥ Cεx
−ε for all

ε > 0. For fixed ε we use dominated convergence to conclude that

φ1(q)
qρL̂(q)

→
∫ 1

0

ρxρ−1 dx = 1, as q → 0.

5.5. The scaling attractor

In systems with complicated dynamics, a fundamental notion aimed at
capturing all long-time behavior, not only limiting states as t → ∞, is
that of the attractor. In finite-dimensional systems, one definition describes
the attractor in terms of all possible limit points of bounded sequences of
solutions. Modulo rescaling in size, this is precisely what we aim to describe
here, following [33]. The resulting object, which we call the scaling attractor,
turns out to have a remarkable characterization analogous to the Levy-
Khintchine representation of infinitely divisible laws in probability theory.

Definition 6: Suppose F̂ is a probability distribution function such that
there exists a sequence of solutions ν(n)

t defined for t ≥ t0 and numbers tn,
βn →∞ such that

F
(n)
tn

(βnx)→ F̂ (x) as n→∞

at each point of continuity. Then we say that F̂ belongs to the (proper)
scaling attractor A.

One property enjoyed by the attractor in a finite system is that it is
an invariant set forward and backward in time. A related property holds
for the scaling attractor. First we note the following scaling property for
measure solutions of Smoluchowski’s equation with K = 2: Let a > 0, b > 0
be given, and let νt be a solution on [t0,∞). Now, let

ν̃t( dx) = aνat(b dx),

with F̃t(x) = Fat(bx). Then, ν̃ is again a solution, on [t0/a,∞), because of
the fact that

φ̃(q, t) =
∫ ∞

0

(1− e−qx)νat(b dx) = aφ(q/b, at)
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satisfies ∂tφ̃ = a2(∂tφ)(q/b, at) = −a2φ2 = −φ̃2.

Now, suppose we have a sequence as in the definition above. Put

F̃
(n)
t (x) = F

(n)
tnt (βnx).

Then

F̃
(n)
1 (x)→ F̂ (x) as n→∞.

Correspondingly, φ̃(n)(q, 1)→ φ̂(q) by the continuity theorem, and

φ̃(n)(q, t) =
φ̃(n)(q, 1)

1 + (t− 1)φ̃(n)(q, 1)
→ φ̂(q)

1 + (t− 1)φ̂(q)
=: φ(q, t).

We have

φ(q, t) =
∫ ∞

0

(1− e−qx)νt( dx),

where νt is a solution on [t1,∞) for all t1 > 0. Starting from any t0 > 0,
such a solution is defined backwards in time as far as it is meaningful.

Definition 7: A solution with K = 2 defined for all t > 0 is an eternal
solution.

This analysis proves the following:

Theorem 8: Points in the scaling attractor correspond one-to-one with
eternal solutions. That is, F̂ ∈ A if and only if F̂ = F1 for some eternal
solution νt.

We get an interesting characterization of the scaling attractor by study-
ing limits as t ↓ 0. Observe that

φ(q, t) =
φ̂(q)

1 + (t− 1)φ̂(q)
→ φ̂(q)

1− φ̂(q)
=: Φ(q), as t→ 0+.

This raises the question: What does this mean in terms of weak convergence
of measures? Note that

∫∞
0
νt( dx) = 1/t → ∞ as t → ∞, and φ̂(q) → 1

as q → 0+, so Φ(∞) = ∞. Also tφ(q, t) → 0, so the limit Ft → δ(x− 0) is
trivial.

The answer turns out to be to look at Gt( dx) = xνt( dx). One has

φ(q, t) =
∫ ∞

0

1− e−qx

x
Gt( dx), ∂qφ(q, t) =

∫ ∞

0

e−qxGt( dx) = LGt(q).

Since
1
φ

=
1

φ̂
+ (t− 1),
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we get that ∂qφ/φ
2 = ∂qφ̂/φ̂(q)2, and hence as t→ 0,

∂qφ(q, t) = LGt(q)→
Φ2

φ̂2
=

∂qφ̂

(1− φ̂)2
= ∂qΦ(q).

By the extended continuity theorem, there exists a measure H on [0,∞)
with

Gt → H as t→ 0+.

From

φ(q, t) = φ(ε, t) +
∫ q

ε

∂qφ(q′, t)dq′,

taking t→ 0 and ε ↓ 0, we get

Φ(q) =
∫ q

0

LH(q′)dq′ =
∫ ∞

0

1− e−qx

x
H( dx).

Since Φ(∞) =∞,

either H(0) > 0 or
∫ ∞

0

x−1H( dx) =∞. (90)

Definition 9: A measure G on [0,∞) is a generating measure if∫
[0,x]

G( dy) +
∫

[x,∞)

y−1G( dy) <∞ for all x > 0,

i.e., ∫
[0,∞)

(1 ∧ x−1)G( dx) <∞.

G is divergent if either G(0) > 0 or
∫
(0,∞)

y−1G( dy) = +∞.

Theorem 10: To each non-divergent generating measure Ĝ with∫
(0,∞)

y−1Ĝ( dy) =
1
t0
, t0 > 0,

there corresponds a unique solution νt on [t0,∞) with νt0( dx) = x−1Ĝ( dx),
and conversely. Furthermore, to each eternal solution νt on (0,∞) there
corresponds a divergent generating measure H, such that

Gt → H as t→ 0.

Conversely, to each divergent generating measure H corresponds a unique
eternal solution νt as above, determined by

φ(q, t) =
Φ(q)

1 + tΦ(q)
, Φ(q) =

∫
[0,∞)

1− e−qx

x
H( dx).
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Proof: We will prove the converse result. For small ε > 0 put

Ĝε = H|[ε,∞) +H(0)δ(x− ε).

Define t0(ε) by

1
t0(ε)

=
∫

(0,∞)

x−1Ĝε( dx) =
∫

[ε,∞)

x−1H( dx) +
1
ε
H(0).

Then t0(ε)→ 0 as ε→ 0, and Ĝε → H on [0,∞). Ĝε determines a solution
νε

t on [t0(ε),∞) with

φε
0(q) = φε(q, t0(ε)) =

∫ ∞

0

1− e−qx

x
Ĝε( dx)→

∫ ∞

0

1− e−qx

x
H( dx) = Φ(q),

as ε→ 0. Then, for t > t0(ε),

φε(q, t) =
φε

0(q)
1 + (t− t0(ε))φε

0(q)
→ Φ(q)

1 + tΦ(q)
=: φ(q, t),

corresponding to a unique eternal solution νt.

The result of this theorem is that each point on the scaling attractor A
corresponds to a unique divergent generating measure H:

F1 ∈ A ←→ νt is eternal ←→ H is a divergent generating measure.

5.6. Linearization of dynamics on the scaling attractor

Understanding the dynamics on the scaling attractor in terms of the mea-
sures H turns out to be a simple consequence of a scaling property of
solutions. The upshot is that nonlinear clustering dynamics governed by
the coagulation equation (79) with K = 2 becomes linear in terms of H.

Suppose νt is an eternal solution. Given a, b > 0, let ν̃t( dx) = aνat(b dx)
and F̃t(x) = Fat(bx). Then, since νt is eternal, ν̃t is also eternal and fur-
thermore, F̃1(x) = Fa(bx). Also, we have

G̃t → H̃ weakly as t→ 0.

But

G̃t( dx) = xν̃t( dx) = axνat(b dx) =
a

b
Gat(b dx)→ a

b
H(b dx), as t→ 0.

Hence

H̃(x) =
a

b
H(bx).
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Theorem 11: Under the correspondence G that maps the scaling attractor
A to divergent generating measures, given by

G(F1) = H1 = H,

the scaling dynamics on A given by F1(x) 7→ Ft(bx) is represented via the
map

H( dx) 7→ Ht( dx) = G(Ft(b dx)) =
t

b
H1(b dx).

Remark 12: In greatest generality, the scaling dynamics is complicated!
One can show that there exists an H1 so that the trajectory t 7→ Ft is dense
in A. This means that solutions exhibit sensitive dependence on initial data,
the hallmark of chaos. To show this, basically we need to show that for every
divergent generating measure H, there exist tn, bn →∞ such that

tn
bn
H1(bn dx)→ Ĥ,

in an appropriate topology. One arranges this by carefully “packing the
tail” of the measure H1 in a way similar to the construction of Doeblin’s
universal laws in probability [19]. Details will appear in [33].

Self-similar solutions. These correspond to solutions invariant under
continuous rescaling with b(t) → ∞ as t → ∞, so that Ft(b(t)x) = F1(x),
i.e.,

H(x) =
t

b(t)
H(b(t)x) for all x > 0.

Take t→∞ and apply the rigidity lemma. Then H must be a pure power:

H(x) = c̃xp for some c̃ > 0, 0 ≤ p <∞.

Then

∂qΦ(q) =
∫ ∞

0

e−qxH( dx) = c̃

∫ ∞

0

e−qx d(xp) = ˜̃cq−p,

so Φ(q) = cq1−p. Note that p < 1, since
∫∞
1
x−1H( dx) <∞. Then,

tφ(q, t) =
∫ ∞

0

(q − e−qx)Ft( dx) =
tcq1−p

1 + tcq1−p

gives

LFt(q) = 1− tφ =
1

1 + tcq1−p
= LF̂1((ct)

1
1−p q),

with

LF̂1(q) =
1

1 + q1−p
=

1
1 + qρ

, for ρ = 1− p ∈ (0, 1].
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trochemie, 65 (1961), pp. 581–594.

51. S. J. Watson, Coarsening dynamics of growing facetted crystal surfaces: the
annealing to growth transtion. submitted.


