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Abstract

We outline the formulation of the theory and the more fundamental
results regarding the stability analysis of the class of tensegrity struc-
tures: structures which are composed of pin-connected inextensible
cables and rigid bars.
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1 Introduction

Following sculptures created by Snelson in 1948, in 1961 Buckminster Fuller
patented a class of cable-bar structures which he called tensegrity structures
[19, 51]. These consisted of arrangements with bars in compression, no two
connected directly, with structural integrity maintained by the tension in
the cables. Hence “tension-integrity”, compressed to “tensegrity”. These
structures, remarkable to Fuller for enclosing large volumes of space with
minimal weight, are not as well known as his corresponding shell construc-
tions, but offer interest both mathematically and for engineers. (See [15] for
a general discussion.) The most famous of these early constructs is Snelson’s
Needle Tower (Fig. 1); the simplest three-dimensional example is the T-3
structure also is shown here (the nomenclature T-3 follows a classification
of Kenner [24] of elementary constructs).

The study of these structures remained in the hands of artists and archi-
tects until the seventies, when analyses of a generalized form of tensegrity
structures appeared in both the mathematical and the engineering litera-
ture. The name “tensegrity structure” was extended to include any class of
pin-connected frameworks in which some of the frame members are cables,
or, complementarily, compression-only struts.

Tensegrity structures offer interesting problems both in structural me-
chanics, where they have generated one family of literature, eg , [5, 47, 6, 26]
and in mathematics, with another family, eg , [8, 49, 9, 63, 12]. The two
groups of authors unfortunately share only a minimal amount of notation
and nomenclature.

This primer collects the results about tensegrity structures which I be-
lieve to be most basic and useful. Mostly it is a compendium, but part of
it is original, and part semi-original, in that I present new proofs of some
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Figure 1: Snelson’s Needle Tower and the T-3 Structure
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established results. It originated as a notebook for me to keep track of
results as I learned them; in various error-filled versions, it has circulated
amongst my co-workers and friends for the last few years, and finally, I feel
compelled to produce a more public and, I hope, more error-free version of
the document.

While my personal interest in these structures is their mechanics, I also
cannot avoid formulating the subject as a mathematician, and hence the
format is rather formal and results are stated and proved as theorems. Also,
in light of the aforementioned incompatibility in notations, I presume to
introduce my own notations and nomenclature, in particular replacing those
nomenclatures from both literatures which I find un-suggestive, misleading,
or stilted. Nonetheless, those familiar with either literature will not, I think,
find it difficult to pick up the manuscript in the middle and recognize the
statements.

A far-from-complete bibliography is appended. In addition to articles
referenced directly, I have chosen a collection of references which focus on
the theory of tensegrity structures.

2 Kinematics

2.1 Nodes and Edges

Physically, a structure is a pin-connected truss. Since the connections are
frictionless pins, the elements of the truss pivot freely upon them, and so the
elements carry only forces parallel their length. The elements of the truss
may be either bars, which carry either tension or compression and which
can neither extend nor contract, or cables which carry only tension and
which cannot extend, but may contract (become slack)1. The mathematical
literature often introduces another sort of element, a strut which may endure
compression but not tension and cannot contract, but can extend (fall out
of the structure) [9, 12]. The mathematical analysis is only notationally
affected by the presence of struts, which can argue either for their inclusion
or their exclusion. Here we choose to consider only cables and bars.

Mathematically, we describe a tensegrity structure as a connected bi-
graph together with a specification of a set of edge-lengths. The graph
consists in a set of edges E and a set of nodes N . The edges are divided

1But in the engineering literature frequently authors consider all or some of the elements
to be elastic. Mathematicians also use elastification as a relaxation method to arrive at
stable positions of the structure.
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Figure 2: T-3 Structure

into two sets, bars and cables:

E = B ∪ C. (2.1)

Generically, we denote edges by latin minuscules, nodes by greek. The graph
of T-3 is shown in Figure 2.

If there are no cables, we may describe the structure as a bar-truss and
it sometimes is useful to compare the behavior of a structure with cables to
the rigidified structure formed by replacing each cable by a bar.

Finally, if e ∈ E is an edge we may find it convenient to denote its
end-nodes generically as

eα, eω ∈ N ; (2.2)

conversely, if α and β are given nodes, we may choose to call the edge
connecting them αβ. The use of these two conventions interchangeably
proves convenient.

2.2 Vector Spaces

We shall have occasion to deal with several vector spaces based on the sets
above. In particular, we use the space

R3N :=
(

R3
)N

, (2.3)
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whose elements will be denoted by blackboard-bold symbols like p with
components pα ∈ R3, and the space

RE , (2.4)

whose elements we denote by bold greek letters, as ω.
We introduce two convenient conventions. First, given a linear map

L ∈ gl(R3), we use the same symbol to denote the product map on R3N

given as
L : R3N 7→ R3N ; (Lv)α = L(vα). (2.5)

Of course the re-interpreted map is linear. Similarly, given a vector v ∈ R3

we use the same symbol for its #N -fold product in R3N . For example, if
w ∈ R3N , we identify w + v, and, in particular, w + wδ by

(w + v)α = wα + v or (w + wδ)α = wα + wδ . (2.6)

2.3 Placements and Motions

A placement of the graph S is an mapping of each nodes into R3. It is
most convenient to describe the placement as a map into R3N :

p ∈ R3N . (2.7)

We will ignore certain physically uninteresting special cases.

Remark 2.1. We always will assume not only that p is injective, but also
that the placement is not collinear.

Physically it is clear that the lengths of the edges are fundamental. We
introduce lengths in a mathematically convenient way through the (one-half-
squared-) length-map

λ : R3N → RE (2.8a)

(λ(p))e =
1
2
||peα − peω ||2. (2.8b)

We often suppose that a set of edge lengths

Λ ∈ RE (2.9)

is assigned, normally as calculated from a base placement. Then, given Λ,
a placement p is said to be admissible if

λb(p) = Λb, ∀ b ∈ B and (2.10a)
λc(p) ≤ Λc, ∀ c ∈ C. (2.10b)
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Given a base placement p and corresponding set of edge lengths λ(p)
we let Adm(p) denote the set of admissible placements relative p. One
special subset of Adm(p) are the placements obtained by a rigid motion of
the given one. Such a rigid movement is described by a proper orthogonal
linear map on R3 plus a translation. (We restrict to proper rotations since
improper ones often cannot be effected for a structure without passing one
edge through another.) This set, the rigidly equivalent placements, are

Euc(p) = {Qp + r |Q ∈ SO(3), r ∈ R3 } ⊂ Adm(p) . (2.11)

Since the operations p 7→ Qp + r represent a group action on R3N , the
sets defined as in (2.11) form a partition of R3N into equivalence classes.
Physically, it is clear that in our analysis of the structure we can identify
equivalent placements. We will consider this systematically in Section 3.1.
It is worth noting that Q when regarded as a linear map on R3N still is
orthogonal.

A motion away from a given placement p is an analytic one-parameter
family of placements

t 7→ q(t); q(0) = p, (2.12)

defined on a half-neighborhood of 0. It is said to be an admissible motion
if q(t) ∈ Adm(p) for all t and a rigid motion if q(t) ∈ Euc(p) for all t.

A motion generates an initial velocity vector

v =
�
q (0) ∈ R3N . (2.13)

Generalizing, we may call any element in R3N a velocity. In the literature
a velocity also is called an infinitesimal displacement.

If q(·) is a motion initiating at p, then the rate of change of the length
function for edge e at time 0 is given by

d

dt
λe(q)(0) = 5λe(p) �

�
q (0) = ( peα − peω ) � (

�
q eα −

�
q eω) . (2.14)

Generalizing, we assign to any placement and any velocity the stretching
vector

ε(p, v) ∈ RE , (2.15)

calculated as

εe = 5λe(p) � v (2.16)
= (peα − peω) � (veα − veω) .
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εe gives the rate of lengthening of the edge e times the length of the edge.
At this stage, it is convenient to introduce the strain cone for the

structure as the convex closed cone

E = {ν ∈ RE |νb = 0 ∀b ∈ B, andνc ≤ 0 ∀c ∈ C}. (2.17)

Its polar (convex closed) cone is the stress cone

S = Eo = {ν ∈ RE |ν � µ ≤ 0 ∀µ ∈ E }
= {µ ∈ RE |µc ≥ 0 ∀c ∈ C } (2.18)

This allows us, for example, to express the condition of admissibility (2.10)
more compactly as

λ ∈ Λ + E , (2.19)

but it is particularly use in discussing velocities (and, later, stresses). Thus,
ε is compatible with (2.10) if and only if ε ∈ E, so we define the set of
admissible velocities for p to be

V(p) = { v ∈ R3N | ε(p, v) ∈ E }, (2.20)

and distinguish a subset of V, the null velocities

V0(p) = { v ∈ R3N | ε(p, v) = 0 }, (2.21)

as those velocities which do not change any lengths. The set V is a closed
convex cone which includes the subspace V0.

Finally, the set of all initial velocities which can be generated by a rigid-
body motion away from p is the six-dimensional subspace of rigid veloci-
ties,

R(p) :=
{

v | v = Wp + v for some skew linear map W of R3,

and vector v ∈ R3
}
. (2.22)

Of course this is a subspace of V0.
The vector 5λ which appears in (2.16) will be called an edge vector;

it has the form

πe(p) = 5λe(p) = 0
¯

: 0peα − peω0 · 0peω − peα0 : 0 ∈ R3N . (2.23)

Here, as suggested by the notation, the only non-zero entries occur in the
eα and eω (end-node) slots, respectively.
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Each edge vector is a linear function of p and we may write

πe = Be p (2.24)

for each e in E . The linear transformations, or edge maps Be map R3N

into R3N , are symmetric, positive, and obey

(Be)2 = 2Be. (2.25)

An important property is that they commute with linear maps of R3, ie,

Be L = LBe. (2.26)

Similarly, given a vector v ∈ R3, it is easy to see that

Be v = 0. (2.27)

Alternative forms for the length of edge e in the placement p then are

λe(p) =
1
4
πe � πe,

=
1
4
Bep � Bep =

1
2

p � Bep (2.28)

and we rediscover the fundamental relation (2.23) as

5λe = Bep = πe , (2.29)

and see that Be = 52
λe.

Next we use the edge vectors as column vectors to construct the geo-
metric matrix

Π =
[
· · ·πe · · ·

]
: RE 7→ R3N . (2.30)

This matrix, or its transpose, usually is called the rigidity in the mathe-
matical literature. It is related by a factor of an edge-lengths in each column
to the structural preferred in the engineering literature.

Then Π is useful for calculations such as

ε = Π>v. (2.31)

In particular,
V0 = Null(Π>); Π>V ⊂ E. (2.32)

Similarly, we can now concatenate the relations (2.29) to obtain

Π = 5λ> . (2.33)

Finally, we collect some computations for rigidly equivalent placements.
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Proposition 2.2. Let the placements p, q be related by q = Qp + r, with Q
orthogonal and r in R3. Then

(a) λ(q) = λ(p)

(b) πe(q) = Qπe(p) for all e ∈ E

(c) Π(q) = QΠ(p)

(b) ε(q, Q v) = ε(p, v) for all v ∈ R3N

(b) V(q) = QV(p)

(b) V0(q) = QV0(p)

(b) R(q) = QR(p)

The proof all are immediate, once we recognize that for any linear map
L of R3 and vector v in R3

Be(Lw + r) = LBe(w)

for all vectors w.

3 Rigidity and Stability

Finally, we can define the fundamental notions of the theory:

Definition 3.1. A placement p is rigid if the only velocities admissible for
p are rigid velocities.

Definition 3.2. A placement p is stable if the only admissible motions
from p are rigid-body motions.

Figure(3) illustrates, in R2, the difference of the two concepts: the first
of the frames is rigid, the second is stable but not rigid, since there is an
admissible velocity (which does not continue to an admissible motion), while
the third clearly is unstable.

A useful restatement of stability is the following.

Proposition 3.3. p is stable if and only if there is a neighborhood of p in
which the only admissible placements are rigid-equivalents of p.
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Figure 3: Two Dimensional Examples, Resp. Rigid, Stable and Unstable

Proof. Clearly if there can be no non-equivalent placements in a neighbor-
hood there can be no family of such placements. If every neighborhood of the
placement includes a non-equivalent admissible placement we can produce
a one-parameter family of placements originating at p. Roth and Whiteley
[49] adapt an argument for bar-structures as follows: given p, the set of
all non-rigid admissible placements can be described as an algebraic set by
defining

D =
{

(q, κ) ∈ R3N × RC | ∀b ∈ B, c ∈ C

λb(q) = λb(p), λc(q) + κ2 = λc(p)
}
\ Euc(p) , (3.1)

since the length functions are quadratic and elements of Euc are linear in q.
Then q is admissible exactly when there is a number κ such that (q, κ) ∈ D.
But our hypothesis and the continuity of the length function ensures that
each neighborhood of (p, 0) includes an element of D, and hence the curve-
selection lemma of Milnor [36] guarantees that there is an analytic path in
D originating at (p, 0), and we obtain our motion.

Remarks:

• Nomenclature varies in the literature; in particular, structures which
we call stable would be called rigid in the mathematical literature, and
those which we call rigid are said to be first-order rigid.

• Glück in [20] observes that the degree of assumed smoothness of mo-
tions is irrelevant in determining stability; hence we have chosen ana-
lyticity as a condition.
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3.1 Fixing the structure

Intuitively, it is clear that all considerations of rigidity and stability should
be independent of superposed rigid motions. Since many constructions are
greatly complicated by the possible presence of these added motions, it is
useful to eliminate them explicitly by choosing a particular class of repre-
sentative elements for the equivalence classes Euc(p).

Our method of choice is outlined as follows:

Proposition 3.4. Let the structure have at least one bar αβ, and have
at least two edges. Given a placement p of the structure there is exactly
one p∗ ∈ Euc(p) which has α at the origin, β lying on the positive x-axis
and has a specified node, γ, not collinear with b in the original placement,
constrained to lie in the y > 0 half of the x-y plane.

Proof. We introduce the right-handed ordered triple of orthonormal vectors
e, f ,g such that

pβ = pα + µe, pγ = pα + νe + φf .

We then construct the proper orthogonal Q = e⊗ ex + f ⊗ ey + g⊗ ez, and
set r = −Qpα. It follows that

p∗ = Qp + r = Q(p− pα) (3.2)

has the required properties. Clearly, it is unique in Euc(p), as the rigid
motion which carries the first such placement to the next must leave α and
β on the positive x−axis; a rotation which carries γ into a new position
must leave the axis fixed and hence move γ from the plane.

Definition 3.5. For a given choice of nodes α, β, γ, the class of all place-
ments having the properties in Proposition 3.4 is denoted Rep.

Proposition 3.6. Rep is an affine subspace of R3N with tangent space

U = {v∗ ∈ R3N | v∗α = 0, v∗β � ey = v∗β � ez = 0, v∗γ � ez = 0}. (3.3)

The subspace U is the space of velocities which can be generated by
motions which stay within Rep. It is complementary to the spaces of rigid
velocities:

Proposition 3.7. For any p∗ inRep R3N = U ⊕R(p∗), ie,

U +R(p∗) = R3N , U ∩R(p∗) = {0}. (3.4)
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Proof. Let v ∈ R3N be given. We seek a decomposition v = u+r. To ensure
that u ∈ U we must construct the rigid velocity with

rα = vα

(rβ)yey + (rβ)zez = (vβ)yey + (vβ)zez (3.5)
(rγ)zez = (vγ)zez.

But r must have the form r = Wp∗ + v. The skew mapping W can be
expressed as

W = wz ex ∧ ey + wy ex ∧ ez + wx ey ∧ ez. (3.6)

To obey the first of (3.5), since p∗α = 0 we must take v = vα. Next, p∗β = λex

with λ > 0 so we must have

rβ = λWex + vα = −λwzey − λwyez + vα. (3.7)

Thus we are left with

−λwz + (vα)y = (vβ)y

−λwy + (vα)z = (vβ)z (3.8)

which yields a unique pair wz and wy. Similarly, p∗γ = µex + νey, with
ν > 0, so

rγ = νwzex − µwzey − (µwy + νwx)ez + vα, (3.9)

leading to
−µwy − νwx + (vα)z = (vγ)z. (3.10)

Given the previous computations, this determines the value of wx. Thus the
decomposition exists and is unique.

Corollary 3.8. All derivatives of a motion in Rep lie in the subspace U .

Now we consider stability and rigidity. We can apply the construction
in the proof of Proposition 3.4 to map motions q(t) to equivalent motions
in Rep. For each t we can construct a Q(t) to obtain

q∗(t) = Q(t)(q(t)− qα(t)) ∈ Rep. (3.11)

By the construction, the function Q(t) is smooth and hence the new motion
is smooth.
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For later uses, we calculate the initial derivatives of the new motion.
Given v and a for p, there are skew linear maps W and S such that the
initial velocity v∗ and initial acceleration a∗ for p∗ have the forms

v∗ = WQ(p− pα) +Q(v− vα) = Wp∗ +Q(v− vα), (3.12)

and

a∗ = (S +W 2)Q(p− pα) + 2WQ(v− vα) +Q(a− aα),

= (S +W 2)p∗ + 2WQ(v− vα) +Q(a− aα), (3.13)

where Q = Q(0). (Recall the convention about insertions into the larger
space: v − vα represents the difference of v with the vector in R3N all of
whose entries are vα.) The relations can be inverted to give v and a in term
of v∗ and a∗.

Now we verify the expected criteria for stability and rigidity in Rep, and
relate these to those for equivalent general placements.

Proposition 3.9. A placement p∗ in Rep is stable if and only if there are
no admissible motions starting from the placement and remaining in Rep.

Proof. If p∗ is stable, then the only admissible motions starting from p∗ are
rigid motions. But no rigid motions stay in Rep.

If p∗ is not stable, there exists a non-rigid admissible q(t) originating at
p∗. But we can use (3.11) to construct an equivalent motion q∗(t) in Rep
originating at p∗ (Q(0) = I). It is admissible, since the rigid mappings used
in the construction all conserve lengths. Existence of this motion will serve
to show p∗ unstable, once we verify that the construction does not create a
constant-valued motion. But were it constant,

q∗(t) = Q(t)
(

q(t)− qα(t)†
)

= p∗ (3.14)

and hence
q(t) = Q(t)>p∗ + qα(t)† (3.15)

would be a rigid motion.

Proposition 3.10. A placement p∗ in Rep is rigid if and only if it has no
non-trivial admissible velocities in U .

Proof. If it is rigid then the only admissible velocities are in R, which is
complementary to U .

If it is not rigid, it has a non-rigid admissible velocity. But this velocity
has a decomposition v + r with v ∈ U not zero. Then Π>(v + r) = Π>v ∈ E

so that v is a non-trivial admissible velocity in U .

14



Finally, we obtain the desired reduction which removes the rigid-body-
motion from our tests for stability and rigidity.

Proposition 3.11. A placement p is stable if and only if its equivalent
p∗ ∈ Rep is stable.

Proof. Suppose q(t) from p is admissible but not a rigid body motion. We
convert it into a motion in Rep from p∗. This motion is admissible; by an
the argument used in Proposition 3.9, since q is not rigid q∗ is non-trivial.

Conversely, given a motion from p∗ we use the inverse of the other con-
struction to find a motion from p. That motion is non-trivial, since q∗ is
not rigid.

Proposition 3.12. A placement p is rigid if and only if its equivalent
p∗ ∈ Rep is rigid.

Proof. Choose the orthogonal Q carrying p to p∗. By Proposition 2.2

V(p∗) = QV(p) and R(p∗) = QR(p), (3.16)

Thus the set of admissible velocities for either placement consists only of
rigid velocities if and only if the same is true for the other.

The fact that a rigid placement is stable is not entirely obvious in the
general case: one has to eliminate the possibility that a rigid velocity might
extend to a motion which is not a rigid body motion (cf [12]). But in Rep
this is trivial: if a motion from the placement exists then it must have a
non-zero derivative, and this derivative must lie in U , so it is not in R.

Proposition 3.13. A placement which is rigid is stable.

3.2 Further Characterization of Rigidity

An important property of Π is

Proposition 3.14. For each e

πe(p) ∈ R(p)⊥. (3.17)

Proof. For any e and any rigid velocity Wp + v, since Be is symmetric and
B2

e = 2Be,

2πe � (Wp + v) = 2Bep � (Wp + v) = 2Bep � Wp

= B2
e p � Wp = Bep � BeWp

= Bep � WBep = 0, (3.18)

since W is skew.
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Corollary 3.15. The range of Π(p) is in R(p)⊥.

Thus the dimension of the range of Π is no more than 3(#N )− 6; since
its domain is RE , the dimension of its domain is #E .

Recall that the placement is rigid exactly when

V = R. (3.19)

We characterize this through use of the following lemma.

Lemma 3.16. Vo = ΠS.

Proof. Consider

(Π S)o = { v | v � Πµ ≤ 0 ∀µ ∈ S }
= { v |Π>v � µ ≤ 0 ∀µ ∈ S }
= { v |Π>v ∈ E } = V. (3.20)

Since Π S is a closed convex cone, Vo = (Π S)oo = ΠS

Thus the placement is rigid if and only if

Π S = Ro = R⊥; (3.21)

the last holds since R is a subspace, which we re-express as

Proposition 3.17. A placement is rigid if and only if

Span {πe | e ∈ E } = R⊥ (3.22)

We look at some special placements in which stability and rigidity are
equivalent. Following Asimow and Roth ([3]) and Roth and Whiteley ([49]),
we call p a regular placement if q = p yields a local maximum of

dim ( Span {πe(q) | e ∈ E}) = rank (Π(q)); q ∈ R3N (3.23)

More specially, if q = p yields a local maximum of

dim ( Span {πe(q) | e ∈ A}) ; q ∈ R3N (3.24)

for all A ⊆ E , we say that p is a general placement.
From Prop 3.17, recognizing that the range of Π is R, immediately

Lemma 3.18. If a placement is rigid then the placement is regular.
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Theorem 3.19 (Asimow & Roth). A placement of a bar structure is
rigid if and only if it is stable and the placement is regular.

Proof. We already have observed that rigidity implies stability. With the
lemma, this give us the forward implication.

For the converse, let us assume the placement is not rigid; we will show
that it cannot be stable. We need the following concept2

Lemma 3.20. The complete (bar) graph, K formed from the node-set N
of a regular placement is rigid.

The affine span of the node-set either is a plane or is all of R3, since we
have excluded co-linearity. Suppose that is all of space. Then we choose
four nodes p0, and p0 + ei, i = 1, 2, 3, where the ei are spanning. Given an
admissible velocity v, we define a linear map W by Wei = vi− v0, using the
obvious abbreviation for the velocities of the selected nodes. Since all line
segments are not shortened by the velocity, we calculate that

Wei � ei = 0, and
W (ei − ej) � (ei − ej) = 0

so that

Wei � ej = −ei � Wej (3.25)

for all choices of i, j. Thus W is skew and we have the claimed relation for
the distinguished nodes.

For any other node, say pκ = p0 + v, we note that v � (vκ − v0) = 0 and
(v − ei) � (vκ − vi) = 0 for i = 1, 2, 3 in order to ensure that the connecting
edges all are unchanged in length. Then for each i

(vκ − v0 −Wv) � ei = (vκ − v0 −Wv) � (ei − v)
= (vκ − vi) � (ei − v) + (Wei −Wv) � (ei − v) = 0, (3.26)

which implies that vκ = Wv + v0. Hence the velocity is rigid.
If the points are planar, then we have only three nodes in the spanning

set, but we may use the condition that the nodes remain in a plane to ensure
unique specification of W and the representation of the velocity. (If n is the

2In fact, Asimow and Roth define the concept of rigidity using this implicit comparison
of the admissible velocities for K and the structure.
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normal to the plane, this condition is (pκ − p0) � Wn + (vκ − v0) � n = 0 for
all nodes.) We define W by the previous calculations for e1, e2 and by

Wn = −n � (v1 − v0)ê1 − n � (v2 − v0)ê2 (3.27)

where (ê1, ê2 is dual to (e1. e2) in the subspace. We then use the planar
calculation for other nodes along with the previous computations to verify
the affine representation. This completes the proof of the lemma.

Assuming the placement is not rigid, we can find a velocity v not in R
which is admissible for the structure. Since it is not admissible for K there
are nodes α, β, necessarily not ends of an edge of the structure, for which

v � (pα − pβ) 6= 0. (3.28)

Next, consider the collection of edge vectors (πe(p) | e ∈ E). Choose a
linearly independent subset with the same span; say (πi(p) | i ∈ I). This
cannot span R3N , since there is a vector, v, orthogonal to all. Since the
edge vectors are continuous functions of the placement, this subset remains
linearly independent in a neighborhood of p, and because p is regular, the
other edge vectors remain dependent upon these in a neighborhood. Note
that even though αβ is not an edge, we can define παβ ; this vector is not
in the span of (πi(p) | i ∈ I), because of (3.28). Again, by continuity, the
collection (πi) together with παβ stays linearly independent in a neighbor-
hood.

Now consider the set of differential equations

πi(q(t)) �
�
q (t) = 0 ∀i; (3.29)

παβ(q(t)) �
�
q (t) = 1. (3.30)

There is a half-neighborhood of t = 0 in which this has a solution. Because
the other edge vectors locally are linear combinations of the (πi), it follows
that no edges change in length, while the nodes α, β move further apart, so
the motion is not isometric.

Roth and Whiteley in [49] strengthen the hypothesis to extend this result
to tensegrity structures:

Theorem 3.21 (Roth & Whiteley). Suppose that p is a general place-
ment. Then the tensegrity structure is rigid at p if and only if it is stable
there.

18



Proof. Rigidity implies stability, as we have noted. Suppose that the place-
ment is not rigid. Consider the set V̂ of admissible, non-rigid velocities. If
all are isometric flexes, then the placement also is not rigid as a bar struc-
ture. But the placement is regular, so the previous results says it would be
unstable as a bar structure and hence unstable as a tensegrity structure.

Suppose, then, that there is a v ∈ V̂ which tends to shorten at least one
edge. We let

A = { e ∈ E |πe � w = 0 ∀w ∈ V̂ } (3.31)

Since v shortens one element, A 6= C; it is not empty, as we assume there are
bars in the structure. As in the previous proof, choose a linearly independent
spanning set(πi) from {πe | e ∈ A}.

We cannot use the technique of the last proof, as there may be several
edges shortened by v.

Consider the set on which this selected set of edges have fixed lengths:

{ q |λi(q) = λi(p) ∀i }. (3.32)

This is a manifold near p with tangent space at q normal to all πi(q). It
follows that the tangent space at p also is normal to all edge vectors πe with
e ∈ A. But this also must be true in a neighborhood of p. For if in each
neighborhood of p there were a q and an eo ∈ A with πeo(q) not normal to
the tangent space then the collection of edge vectors from A would of higher
dimension at q than at p, contradicting that p is a general placement. It
follows that all edges in A are of constant length in a neighborhood of p on
the manifold.

We choose a path in the manifold starting at p whose initial tangent
vector is v. All of the edges in A remain constant on this path, and since
v shortens at least one edge, the same remains true, by continuity, in some
neighborhood. Thus we have an admissible path, and the placement is
unstable.

These results are useful, but leave much to be done; as we shall see,
placements which are stable but not rigid are of great interest, and these
cannot be general placements.

3.3 Stability and Expansions of Motions

The concept of second-order stability was introduced by Connelly and White-
ley [12]. To motivate it, consider a motion q(t) away from p, and take the

19



first and second derivatives of the associated length function:

λe(0) = Bep � p (3.33a)
�
λe(0) = 2Bep �

�
q (0), (3.33b)

� �
λ e(0) = 2Be

�
q (0) �

�
q (0) + 2Bep �

� �
q (0). (3.33c)

Accordingly, we call a pair (v, a) ∈ R3N ×R3N an admissible velocity-
acceleration pair for p if they satisfy

Bbp � v = 0, and Bbv � v +Bbp � a = 0 (3.34a)

for each bar b ∈ B, and either

Bcp � v < 0 (3.34b)

or
Bcp � v = 0, and Bcv · v +Bcp � a ≤ 0 (3.34c)

for each cable c. Of course, rigid motions give rise to admissible velocity-
acceleration pairs.

Definition 3.22. A placement p is second-order stable if the only ad-
missible velocity-acceleration pairs (v, a) are those with v rigid.

Clearly a placement which is rigid is second-order stable, but also

Theorem 3.23 (Connelley & Whiteley). A placement which is second-
order stable is stable.

We defer the proof; it is simplest to prove it in Rep, and we must first
establish some equivalences.

Let p∗ ∈ Rep be rigidly equivalent to p via p∗ = Q (p − p†α). In (3.12)
and (3.13) we have the general form of the velocity and acceleration change
under equivalent motions from the two placements. Since the motions from
p∗ remain in Rep, it follows that given an admissible velocity-acceleration
pair for p we can choose skew maps W and S to ensure that the velocity-
acceleration pair for p∗ are each in U .

Then for the equivalent p, p∗ we relate the factors from the second-order
stability test. First,

Bep∗ � v∗ = Bep � v ,
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and

Bev∗ � v∗ = Be(Wp∗ +Q(v− v†α) � (Wp∗ +Q(v− v†α)

= −Bep∗ � W 2p∗ + 2BeWp∗ � Qv +Bev � v

= −Bep∗ � W 2p∗ − 2Bep∗ � WQv +Bev � v , (3.35)

while

Bep∗ � a∗ = Bep∗ �
[
(S +W 2)Q(p− p†α) + 2WQ(v− v†α) +Q(a− a†α)

]
= Bep∗ � Sp∗ +Bep∗ � W 2p∗ + 2Bep∗ � WQv +Bep � a

= Bep∗ � W 2p∗ + 2Bep∗ � WQv +Bep � a. (3.36)

Then we combine these to find

Bep∗ � v∗ = Bep � v (3.37)

and

Bev∗ � v∗ +Bep∗ � a∗ = Bev � v +Bep � a (3.38)

Proposition 3.24. If p∗ ∈ Rep is rigidly equivalent to p with rotation Q,
and if velocities and accelerations are related by (3.12) and (3.13) then

Bep∗ � v∗ = Bep � v

and
Bev∗ � v∗ +Bep∗ � a∗ = Bev � v +Bep � a.

Hence p is second-order stable if and only if p∗ is.

To complete the proof we need only note that the mapping of veloc-
ity acceleration into Rep carries a rigid velocity into a rigid velocity and
conversely a rigid velocity for p∗ has as preimage only rigid velocities.

Finally, by considering projections into U , it is easy to see that we may
restate the criterion for Rep:

Corollary 3.25. A placement in Rep is second-order stable if and only if
any admissible velocity-acceleration pair in U has zero velocity.
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In [1] Alexandrov, dealing only with bar structures, generalizes this ex-
pansion of the motion, and provides some more sufficient conditions for
stability. We follow his computations. For convenience, let us work in Rep,
with velocity subspace U .

A motion from p∗ is written as

q(t) =
∞∑

s=0

tsqs q0 = p∗. (3.39)

All of the coefficients except q0 lie in U .
For each edge e, we calculate

λe(t) = λe(p) +
1
2

∞∑
s=1

(
s∑

r=0

Be qr � qs−r

)
ts. (3.40)

First, consider a bar b. To be admissible the motion must satisfy
s∑

r=0

Bb qr � qs−r = 0 s = 1, 2, . . . , (3.41)

and since Bb q0 = πb we have the recursion relation

2πb
� qs = −

s−1∑
r=1

Bb qr � qs−r s = 1, 2, . . . . (3.42)

For reference, the first few terms are

2πb
� q1 = 0

2πb
� q2 = −Bb q1 � q1

2πb
� q3 = −2Bb q2 � q1 (3.43)

2πb
� q4 = −2Bb q1 � q3 −Bb q2 � q2.

The first two are part of the criterion that q1, 2q2 be a velocity-acceleration
pair.

For a cable c the recursion may truncate. The conditions are

s∑
r=0

Bc qr � qs−r ≤ 0 p = 1, 2, . . . , (3.44)

or the recursion

2πc
� qs ≤ −

s−1∑
r=1

Bc qr
� qs−r p = 1, 2, . . . , (3.45)
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with the understanding that the recursion truncates at the first p for which
inequality obtains. Alexandrov’s generalization of the second-order stability
condition, expanded to tensegrity structures, follows:

Lemma 3.26. If there is an integer s such that for some b ∈ B (3.42) has
no solution in U , or if there is an integer s such that for some c ∈ C not
already shortened (3.45) has no solution in U , then the placement is stable.

We wish to prove the second-order stability condition (Theorem 3.23); we
need to consider the equivalent statement in Rep. If a motion q(·) yielding
initial velocity and acceleration v and a is equivalent to the motion q∗(·) in
Rep, the initial velocity and acceleration of the latter both lie in U and have
the forms

v∗ = WQ(p− p†α) +Q(v− v†α),

a∗ = (S +W 2)Q(p− p†α) + 2WQ(v− v†α) +Q(a− a†α), (3.46)

where both S and W are skew and Q is the rotation map in the rigid map of
p into p∗. We can reuse previous arguments to show that given any v, a we
can find W,S to ensure that the resulting v∗, a∗ are in U . Note that (3.46)
is an injection between (v, a) and (v∗, a∗).

Proof. Suppose that there is an admissible motion from p∗ ∈ Rep. Consider
its expansion as in (3.39).

If q1 6= 0, then for each bar b and cable c

πb
� q1 = 0 and 2πb

� q2 +Bbq1 � q1 = 0 (3.47)

and

πc � q1 < 0 or
πc � q1 = 0 and 2πc � q2 +Bcq1 � q1 ≤ 0

so that q1,
1
2q2 form an admissible velocity-acceleration pair.

If q1 = 0, let qr be the first non-zero coefficient. From the recursion
relation, for each bar b and cable c

πb
� qr = 0 and πc � qr ≤ 0.

Consider the recursion rule for q2r:

2πb
� q2r +Bbqr � qr = 0,
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and, if qr < 0,
2πc � q2r +Bcqr � qr ≤ 0.

Hence qr,
1
2q2r form an admissible velocity-acceleration pair.

Hence if there is an admissible motion then there is an admissible velocity-
acceleration pair. Thus non-existence of such a pair implies stability.

4 Forces and Stresses

Now we introduce the concept of forces into our calculations.

4.1 Resolvable Forces

We represent a set of externally imposed forces applied to the structure
as a vector of nodal forces:

f ∈ R3N . (4.1)

We are interested in equilibrium of structures, so we consider only those sets
of applied forces whose net force and moment is zero. It is convenient to
express this by saying that if p is a given placement of the structure, then
a force f is equilibrated relative p if

f ∈ R(p)⊥. (4.2)

Each edge of the structure may carry a force; we measure their magnitude
in a convenient way by a stress vector

ω ∈ RE . (4.3)

ωe is the force carried by the edge e divided by the length of e. It is taken
to be positive if the force is a tension, so that it generates a force on the
node eα as

−ωe (πeα − πeω) . (4.4)

The totality of the edge-forces acting on a node is then the corresponding
entry in the sum

−
∑
e

ωeπe (4.5)

and balance of external and edge-forces is expressed as

f =
∑
e

ωeπe. (4.6)
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or

f = Πω (4.7)

By (4.7) and the corresponding form (2.31) for edge-strains, we have the
equation of virtual work: for any ω and any v

f � v = ω � ε, (4.8)

outlining the duality between the forces-velocities and stress-stretching pairs.
A further characterization of virtual work is allowed by the continued cal-
culation

f � v = Πω � v =
∑
e

ωeBep � v =

=

(∑
e

ωeBe

)
p � v = Ω p � v (4.9)

where we have introduced the (symmetric) stress operator

Ω =
∑
ωeBe (4.10)

of Connelly [9, 12].
Recognizing that cables can carry only tension, we call a stress a proper

stress if
ω ∈ S, (4.11)

(recall the definition of the stress cone as S = {µ ∈ RE |µc ≥ 0 ∀c ∈ C })
and call the stress strict if ωc > 0 for all cables c.

An external force f balanced by a stress vector is called resolvable. By
(4.6) and (3.17), we have

Proposition 4.1. Any resolvable external force is equilibrated.

Of particular interest is the cone of properly resolvable forces for p

F(p) = Π S ⊆ R⊥. (4.12)

We already have used this set in Lemma 3.16 and in Proposition 3.17. We
repeat these in

Proposition 4.2. For any placement the convex cone of properly resolvable
forces F is the polar of the cone of admissible velocities, and the placement
is rigid if and only if F is a linear space.
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The classical definition of mechanical rigidity was formulated in [32]

Definition 4.3 (Maxwell). A placement of T is statically rigid if each
equilibrated force is properly resolvable.

The following was proved for bar-trusses by Maxwell, and generalized to
tensegrity structures in [49]

Theorem 4.4 (Maxwell, Roth & Whiteley). Rigidity is equivalent to
statical rigidity.

Proof. Rigidity means that V = R; statically rigidity means that F = R⊥.
But Lemma 3.16 ensures that the two statements are equivalent.

Corollary 4.5. A structure in a given placement can support all applied
loads if and only if it is not flexible.

4.2 Prestresses and Stability; the Second-order Stress Test

The notion of prestresses turns out to be of central importance in the de-
velopment of the theory, as experiments with tensegrity constructs demon-
strate.

A stress vector ω is a prestress if it resolves 0, i.e., if∑
e

ωeπe = 0 (4.13)

or

Πω = 0 (4.14)

Thus a prestress represents a linear dependency amongst the set {πe } of
edge vectors or, equivalently, is in the null space of Π. Both points of view
are useful in what follows. We may call (p,ω) a tensegrity pair if ω is a
prestress for the placement p

The equation of virtual work (4.8) leads to a useful computation, which
says that a prestress does no work under any velocity applied to the system.

Lemma 4.6. If ω is a prestress for the placement then for any velocity field
v,

f � v = ω � ε =
∑
e

ωeεe = 0. (4.15)

If ω is proper and v is admissible, then for each edge e

ωeεe = 0. (4.16)
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Proof. The first statement is immediate. The second is a consequence, since
for each bar we have εb = 0, while for each cable ωcεc ≤ 0 by the sign
restrictions on proper prestresses and admissible velocities.

Some technical results will be useful later.

Proposition 4.7. 1. ω is a prestress for the placement p iff the corre-
sponding stress operator has the property

Ω p = 0. (4.17)

2. If ω is a prestress for the placement p then

ω � λ(p) = 0. (4.18)

3. If ω is a prestress for the placement p then it is a prestress for any
placement q which is an affine image of p. In particular, it is a pre-
stress for all placements equivalent to p.

Proof. The first is just a restatement of
∑
ωeBep = 0. To obtain the second,

we take the dot product of this expression with p. The last result is an
immediate consequence of the fact that linear maps filter through Be (2.26).

Now we can relate stability and prestresses. An interesting relation be-
tween structures and the equivalent bar-truss is given in [49]:

Theorem 4.8 (Roth & Whiteley). A placement is rigid as a tensegrity
structure if and only if it is is rigid as a bar-truss and the placement admits
a strict proper prestress.

Proof. If F denotes the set of resolvable forces for the tensegrity structure
the corresponding set of forces for the bar-truss, Fs is the range of Π:

Fs = Π RE = Span F. (4.19)

Generally F ⊆ Fs They are equal exactly when−πc ∈ F for each cable c, and
hence exactly when F is a subspace. We use the lemma

Lemma 4.9. There exists a strict prestress for the placement if and only if
F is a subspace.
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Proof. If ω is a strict proper prestress we have∑
ωbπb +

∑
ωcπc = 0 (4.20)

with all ωc > 0. This means that for any cable co,

−πco =
1
ωco

∑ωbπb +
∑
c 6=co

ωcπc

 , (4.21)

and, as noted above, this ensures that F is a subspace.
Conversely, if F is a subspace, then for any co ∈ C we have −πco ∈ F, so

we can find coefficients such that

−πco =
∑
εbπb +

∑
c

εcπc, εc ≥ 0. (4.22)

Thus there is a strict proper prestress (with the stress in co being 1+εco).

If the tensegrity structure is rigid then so is the bar structure and the
lemma ensures that there is a strict proper prestress (since F = R>).

If the bar structure is rigid then Fs = R>, and if there is a strict proper
prestress then F is a subspace and F = Fs = R>.

Corollary 4.10. There exists a strict proper prestress if and only if V is a
subspace.

The connection with V follows since Fo = V.
Thus we have a connection of prestress and rigidity. We wish to examine

the connection to stability. The following result from [49], cf. [63] is a first
step.

Theorem 4.11 (Roth & Whiteley). Given a placement and co ∈ C,
there is an admissible velocity with stretching εco < 0 if and only if every
proper prestress has ωco = 0.

In fact this is a consequence of the next theorem, but it has a direct
proof which is more intuitive than that one.

Proof. Consider the velocity v. By Lemma 4.6, since the velocity is admis-
sible, for any proper prestress ω we have

ωcεc = 0

for each cable c. But εco < 0, which means that ωco = 0.
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Conversely, if every proper prestress has ωco = 0 it follows from the
argument in Lemma 4.9 that

−πco /∈ F. (4.23)

But this ensures that there is a v ∈ V = F0 such that

−πco
� v > 0, (4.24)

ie εco < 0, while
γ � v ≤ 0 (4.25)

for all vectors γ in F. In fact it must be true that γ � πb = 0 for all bars b,
since −πb ∈ F. Hence v is admissible.

It is then a simple step to generalize this to

Corollary 4.12. Given a placement of T and A ⊂ C, there is an admissible
velocity with εc < 0 for all c ∈ A if and only if every proper prestress has
ωc = 0 for all c ∈ A.

This result appears stated in a slightly different form as Prop 5.1.1 in [12].
Their Prop 5.1.2 is the following, which can be regarded as a generalization
of the virtual work statement (4.15), or alternatively, a convexification of
the range-null-space-of-transpose result of linear algebra.

Proposition 4.13. Given a placement and given ε ∈ RE there exists a
velocity w such that

πb
� w = εb for every b ∈ B, (4.26a)

πc � w ≤ εc for every c ∈ C, (4.26b)

if and only if for every proper prestress ω

ω � ε ≥ 0. (4.27)

Proof. Let H denote the range of Π>. Then (4.26) is the statement that

ε ∈ H − E. (4.28)

−E is a closed convex cone, so that H−E also is one. For any closed convex
cone D we have Doo = D, so that (4.28) is equivalent to

ε ∈ (H− E)oo. (4.29)

Now we need a computation for polars of such sets.
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Lemma 4.14. For any subspace U and any convex closed cone D

(U +D)o = U⊥ ∩ Do. (4.30)

Proof. If a ∈ U⊥ ∩ Do then for all u ∈ U ,d ∈ D we have a � (u + d) ≤ 0.
Conversely if a � (u + d) ≤ 0 for all such vectors then also a � (−u + d) ≤ 0
and it follows that a � u = 0,a � d ≤ 0.

Hence (4.29) becomes

ε ∈ (H⊥ ∩ (−S))o = −(H⊥ ∩S)o. (4.31)

But H⊥ is the null space of Π, ie, the set of null stresses, so that S ∩ H⊥

is the set of proper prestresses. Thus (4.31) says that ε � (−ω) ≤ 0 for any
proper prestress, which is the same as (4.27).

An immediate application of Proposition 4.13 gives an important test
for the existence of velocity-acceleration pairs.

Corollary 4.15. An admissible velocity v extends to an admissible velocity-
acceleration pair if and only if for every proper prestress ω∑

ωev � Bev = v � Ω v ≤ 0. (4.32)

Proof. From (3.34) we see that given an admissible v we seek an a such that

πb
� a = −v � Bbv (4.33a)

πc � a ≤ −v � Bcv (4.33b)

for all bars and those cables for which Bcp � v = 0. For the set A of cables
which have Bcp � v < 0 there is no restriction; for these let us replace (4.33b)
by

πc
� a ≤ −1. (4.33c)

The proposition says that (4.33) can be true if and only if

−
∑
E\A

ωev � Bev−
∑
A
ωc ≥ 0. (4.34)

Since ωc = 0 for all c ∈ A, this is equivalent to

−
∑
ωev � Bev ≥ 0. (4.35)
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Corollary 4.16. If an admissible velocity does not shorten any cable then
it extends to an admissible velocity-acceleration pair if and only if for every
prestress ω ∑

ωev � Bev = v � Ω v = 0. (4.36)

Since second-order stability implies stability we have the second-order
stress test of Connelly and Whiteley [12].

Corollary 4.17. A sufficient condition for stability of a placement is that
for some proper prestress

v � Ω v = v �
∑
ωeBev > 0, (4.37a)

or, equivalently, ∑
ωe (veα − veω)2 > 0, (4.37b)

for all non-rigid admissible velocities. If the set of admissible velocities in-
cludes only isometric velocities the condition is that the sum be non-zero.

An alternative, weaker version of this may be useful.

Corollary 4.18. A sufficient condition for stability of a placement is that
for each non-rigid admissible velocity there is a proper prestress for which

v � Ω v = v � = v �
∑
ωeBev > 0, (4.38)

Note that for an affine velocity v = Wp + v† we have∑
ωeBev = W

∑
ωeBep = 0 , (4.39)

so that
v � Ωv = 0, (4.40)

and the second-order stress test fails if there is an admissible non-rigid affine
velocity.

It follows that a way of ensuring Proposition 4.17 hold is Connelly’s
condition of super-stability ([14]): a placement is stable if

• There is a strict proper prestress.

• Ω is positive semi-definite.

• The rank of Ω is maximal.

• Aside from rigid velocities no affine velocities are admissible .
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These ensure that there are no non-isometric flexes and that Ω is positive-
definite on non-rigid velocities.

A physical motivation for the criterion in Proposition 4.18 is given by
Calladine and Pellegrino [6]. Consider that

Π(p) = [. . . Bep . . .] . (4.41)

If the admissible velocity v is regarded as an infinitesimal perturbation of p
the perturbed geometric matrix is

Π(p + v) = [. . . (Bep +Bev) . . .] = Π(p) + Π(v). (4.42)

A prestress for p is not necessarily one for the new placement; the force
required to maintain the given prestress in the new placement would be

f = Π(p + v)ω = Π(v)ω =
∑
ωeBev, (4.43)

and (4.38) is then the statement is

f � v > 0, (4.44)

that positive work must be done to move the structure from its original
placement.

4.3 Stress in Rep

Rep is a special type of constrained structure. We will discuss general con-
straints later, but here will verify that the criteria for stability developed in
the previous section will apply without change to this case. Rep is an affine
subspace (of the form b+U), as verified in Proposition 3.6; the distinguishing
property of Rep is that stated in Proposition 3.7:

U ⊕R(p∗) = R3N . (4.45)

For any structure constrained to an affine space one distinguishes a class
of applied forces which do no work on velocities in the associated subspace
of velocities. These are called reaction forces, and, physically, represent
forces needed to maintain the constraints in a motion. For Rep the space of
reaction forces is U⊥, and they have a special property:

Proposition 4.19. If p∗ ∈ Rep then given any force f ∈ R3N there is a
reaction force r such that f + r is balanced.
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Proof. By (4.45) we have U⊥ ⊕ R(p∗)⊥ = R3N and hence we can write
f = −r + d, with d ∈ R(p∗)⊥. By definition d is balanced.

For a general constrained structure there may be prestresses which re-
solve purely reactionary forces. Here this cannot be.

Proposition 4.20. If p∗ ∈ Rep then for any ω ∈ RE

Πω /∈ U⊥. (4.46)

This is because the range of Π is in R(p∗)⊥, which meets U⊥ only in 0.
Now we consider the specialization of Proposition 4.13. Given an ε ∈ RE

we seek a w ∈ U with

πb
� w = εb for every b ∈ B,

πc � w ≤ εc for every c ∈ C,

It is convenient to restate this by allowing w to be any vector in R3N and
replacing each πe by Pπe, where P is the orthogonal projection of R3N

onto U . This replaces Π in the proposition by PΠ and the necessary and
sufficient condition is replaced by

ε � ω ≤ 0 ∀ω ∈ S such that PΠω = 0. (4.47)

But PΠω = 0 means Πω ∈ U⊥ which can be true only if Πω = 0. We
restate the result for this case.

Proposition 4.21. Given a placement in Rep and given ε ∈ RE there exists
a velocity w ∈ U such that

πb
� w = εb for every b ∈ B, (4.48a)

πc � w ≤ εc for every c ∈ C, (4.48b)

if and only if for every proper prestress ω

ω � ε ≥ 0. (4.49)

4.4 Sufficient Conditions Based on Expansions of the Motion

We follow the formulation of the second-order stress test, but using the
full expansion of motions as in Subsection 3.3. As in that section, we will
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assume the placement we consider is in Rep. We saw there that a motion
was admissible if it satisfies recursion relations of the form

2πe � qs ≤ −
s−1∑
r=1

Be qr � qs−r s = 1, 2, . . . . (4.50)

In these equations we stipulate that the ≤ converts to an equality for bars,
and have not explicitly noted the possible truncation of the series for e a
cable. To do the latter precisely, let us define a sequence of un-shortened
cables recursively:

C0 = C (4.51a)

and for positive m

Cm = Cm−1 \ { c ∈ Cm−1 | 2πc � qm < −
m−1∑
r=1

Bc qr � qm−r } (4.51b)

We now can apply Proposition 4.13 to the set of inequalities.

Proposition 4.22. Let q(t) :=
∑
tsqs be a motion in Rep. Define the

sequence (Cm) as in (4.51) and set Em = B ∪ Cm. Then necessary and
sufficient conditions that the expansion represent an admissible motion are
that for each proper prestress ω,

∀e ∈ E πe � q1 ≤ 0 (4.52a)

and for n = 1...∞

∑
e∈E2n


n−1∑
p=1

2ωeBeqp � q2n−p + ωeBeqn � qn

 ≤ 0 (4.52b)

∑
e∈E2n+1


n∑

p=1

ωeBeqp
� q2n+1−p

 ≤ 0. (4.52c)

In each of these equations, the ≤ connotes equality for edges which are bars.

An interesting consequence is applicable mostly to bar structures;

Corollary 4.23. It there is no prestress a placement of a structure is stable
if and only if it is rigid.
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It may be useful to examine the form of the first few terms from (4.52).∑
ωeBe q1 � q1 ≤ 0∑
ωeBe q1 � q2 ≤ 0

2
∑

ωeBe q1 � q3 +
∑

ωeBe q2 � q2 ≤ 0 (4.53)∑
ωeBe q1 � q4 +

∑
ωeBe q2 � q3 ≤ 0

Proposition 4.22 carries a set of stopping rules or sufficient conditions
for stability:

Corollary 4.24. The placement is stable if for any expansion there is a
prestress for which for some n > 1

∑
E


n−1∑
p=1

2ωeBeqp � q2n−p + ωeBeqn � qn

 > 0 (4.54a)

or

∑
E


n∑

p=1

ωeBeqp � q2n+1−p

 > 0. (4.54b)

These generalize the second-order stress test. The first few are:∑
ωeBe q1 � q1 > 0 (4.55a)∑
ωeBe q1 � q2 > 0 (4.55b)

2
∑

ωeBe q1 � q3 +
∑

ωeBe q2 � q2 > 0 (4.55c)∑
ωeBe q1 � q4 +

∑
ωeBe q2 � q3 > 0, (4.55d)

or, in terms of the stress operator

Ω q1 � q1 > 0 (4.56a)
Ω q1 � q2 > 0 (4.56b)

2 Ω q1
� q3 + Ω q2

� q2 > 0 (4.56c)
Ω q1 � q4 + Ω q2 � q3 > 0. (4.56d)

Satisfaction of any one ensures that the expansion cannot be continued.
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5 Energies and Stability

The second-order stress test (Corollary 4.17) is a positivity condition which
ensures stability; the results of the last section enlarge upon it. Here we shall
expand upon this, developing ideas due to Connelly [9, 12] and to Caladine
and Pellegrino from a different point of view.

5.1 Elastic Energies

We consider the equilibria of structures in which all of the edges are elastic.
Placements in which such a structure is in equilibrium under null external
loading will also serve as equilibrated placements for a non-elastic tensegrity
structure of corresponding edge lengths (let us agree to call this the hard
version of the structure). Physically, it seems clear that if motions from a
placement of an elastic structure increase the energy of the system then both
it and the corresponding hard structure will be stable. The converse clearly
is false: a hinged rod under compression between fixed pivots is stable as a
hard structure, but unstable as an elastic system.

Even in an elastic structure it is important to distinguish cables from
bars. In this setting a cable is an elastic element which cannot accept stress
when shorter than its natural length.

Recall that λe is half of the square of the length of the edge e. We let

le =
√

2λe (5.1)

denote the edge-length. Then an elastic energy for the edge is specified
by giving a natural length loe and an energy function ψe. The energy of
the edge is then given as

ψe(le − loe) (5.2)

with the provision that for cables c

ψc(l) = 0 for l ≤ 0. (5.3)

The simplest form of such a function is quadratic (if the edge is linearly
elastic): ψe(l) = κe l

2. We shall assume, as is reasonable on physical grounds,
that for all e

ψe(0) = 0, (5.4)
ψ′e(0) = 0, (5.5)

ψ′′b > 0 for bars and ψ′′c

∣∣∣
R−

> 0 for cables. (5.6)
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It follows that each ψe is a convex function with non-negative values.
For our purposes it is more convenient to revert to using λe; from(5.1),

φe(λe) = ψe(le − loe) = ψe

(√
2λe − loe

)
. (5.7)

We relate this to our previous notations by equating the rate of change of
energy to the rate of working in the edge. For a motion with initial velocity
v

d

dt
φe

∣∣∣
t=0

= φ′e5λe � v = φ′eπe � v = ωe εe, (5.8)

which shows that in this context the stress in e is

ωe = φ′e(λe). (5.9)

This is consistent with the interpretation of ωe as a force per length, since

φ′e(λe) =
ψ′e(le − loe)

le
, (5.10)

and ψ′e(le − loe) is the force in the element at this value of length.

Lemma 5.1.

• If le(p) is greater than the natural length then ωe = φ′(λe) > 0

• If le(p) is less than the natural length then ωe = φ′(λe) < 0

• If le(p) is equal to the natural length then ωe = φ′(λe) = 0

The total elastic energy is

Φ(p) =
∑

φe(λe(p)). (5.11)

We are concerned with the behavior of this function. If it is a strict local
minimum at a placement, then the elastic structure is stable.

Proposition 5.2. Suppose that p represents a strict local minimum of Φ
modulo rigid motions. Then if all cables have non-negative stresses (φ′c ≥ 0),
p is a stable tensegrity placement for the corresponding tensegrity structure.

Proof. To begin, note that since p gives a relative local minimum, the energy
is stationary there:

5Φ =
∑

φ′e(λe(p))5λe(p) =
∑
ωeπe = 0 . (5.12)
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Thus the stresses in the elastic structure are (proper) prestresses for the
hard structure.

Any placement q near p and admissible for the hard structure must have
λ(q) ≤ λ(p). Thus cables c have lengths at these q no longer than those at p.
Since the ψc are increasing functions, it follows that φc(λc(q)) ≤ φc(λc(p)).
On the other hand, the lengths of bars b do not change, and so φb(λb(q)) =
φb(λb(p)). Hence Φ(q) ≤ Φ(p). By hypothesis the inequality can only be
an equality and q can differ from p only by a rigid transformation.

Thus a stable placement of an elastic tensegrity structure also is stable
for the hard structure. But it is clear that less is required for the latter:

Corollary 5.3. Suppose that p represents a strict local minimum of Φ
among all motions which are admissible for the hard structure, modulo rigid
motions. Then if all cables have non-negative stresses (φ′c ≥ 0), p is a stable
tensegrity placement for the hard tensegrity structure.

Let us investigate conditions that ensure the energy is minimal. We have
observed that (5.12) ensures that it is stationary.3

Next, we examine the second-order terms. The second derivative is

52Φ =
∑

φ′′e πe ⊗ πe +
∑
ωeBe =

∑
φ′′e πe ⊗ πe + Ω. (5.13)

If we examine the values of this quadratic form on initial velocities, we
note that it is zero on any rigid velocity. Thus an immediate criterion is

Corollary 5.4. A sufficient condition for stability of a placement of an
elastic tensegrity structure is that∑

Φ′′
e [πe � v]2 + v � Ωv > 0 (5.14)

for all velocities v ∈ R⊥.

Of course, we also have

Corollary 5.5. A sufficient condition for stability of a placement of the
hard version of an elastic tensegrity structure is that∑

Φ′′
e [πe � v]2 + v � Ωv > 0 (5.15)

for non-rigid admissible velocities v ∈ R⊥.
3If there are applied conservative forces, we add a potential for the applied forces to

the energy; minimization then yields the full force balance (4.6).
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This energy criterion is weaker, in general, than the second order
stress test, but is identical if the only admissible velocities are isometric.
That condition is ensured if we know that the prestress leaves all cables
stressed (Theorem 4.11 ).

Corollary 5.6. If it is true that φ′c(p) > 0 for all cables, then for any
admissible velocity v

52Φ[v, v] = v � Ωv (5.16)

so that the energy is positive-definite on the subspace of non-rigid admissible
velocities if and only if Ω is.

To interpret (5.15) in physical terms, note that

Φ′′
e =

ψ′′e
2λe

− ψ′e
(2λe)3/2

(5.17)

=
ψ′′e
l2e
− ψ′e
l3e

=
(
le φ

′′
e − φ′e

)
/l3e . (5.18)

This is indeterminant in general, but in particular if the edge is linearly
elastic, so that ψ′e = κe(le − loe) and ψ′e = κe, then

Φ′′
e = κe l

o
e/l

3
e > 0. (5.19)

and the term is positive, enhancing the second-order stability condition.
Remark We have chosen to ”elastify” all of the edges of the structure. Simi-
lar calculations apply to one in which only some edges are taken to be elastic
(cf [43]). In this case, the lengths of the hard edges enter the minimization
as constraints, and their stresses as LaGrange multipliers. In this sense a
hard structure is one in which the system consists only in constraints, with
a null objective function.

5.2 Prestress Stability

Connelly and Whiteley take a constructive approach to the above energy cal-
culations. They consider a tensegrity pair (p,ω) and assert that it is stable
if an energy function, or, more precisely, the quadratic localization of one,
can be constructed. They attain more generality by allowing indefiniteness
in the quadratic form.

In [12] they define a placement to be prestress stable if there is a
proper prestress ω and a family of non-negative numbers (γe) such that
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• H =
∑
γeπe ⊗ πe + Ω is positive semi-definite,

• for any cable c, ωc = 0 ⇒ γc = 0,

• H(v, v) = 0 only if v ∈ R.

In other words they propose to construct an energy function which will
serve the desired role in establishing stability. The restriction placed upon
the stress-free cables serves to generalize applicability somewhat, as it en-
ables ignoring of these cables (so long as their being non-stressed does not
enable motions which leave H unchanged). They then observe that prestress
stability implies stability.

6 Stability and Stresses

The results in the last sections dealt with local approximations. Some results
which are purely topological were established by Connelly and Whiteley.

6.1 Existence of a Prestress

In [9] Connelly used relaxation techniques to relate stability and existence of
a prestress for a tensegrity structure (we assume throughout this subsection
that the structure has at least one cable). Our proof of these results is
adapted from Whiteley [62]. The preliminary result presented next is of
interest in itself. It indicates in particular that a strict prestress is in some
sense generic for stable placements.

Proposition 6.1. Let p be a stable placement of a tensegrity structure.
Then within any neighborhood of p there is a placement with a strict proper
prestress.

Recall that strict means that there is a prestress on all cables; no asser-
tion is made about bars.

Proof. Given p, for each edge e we set Λe = λe(p) and construct a family
of energy functions. For each bar b, set

fb(λ) = (λ− Λb)2. (6.1)

For each cable c we construct a family of functions. Given δ > 0, set

f δ
c (λ) =


δ

Λc
λ 0 ≤ λ < (1 + δ)Λc

(δ + δ2) + δ
Λc

[λ− (1 + δ)Λc]
+[λ− (1 + δ)Λc]2 otherwise

(6.2)
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Thus f0
c is zero in [0,Λc] and quadratic after, while each f δ

c is linear,
with positive slope, in [0,Λc + δ] and quadratic after. All are C1, and the f δ

c

converge uniformly to f0
c on bounded intervals. We define the total energies

as
Hδ(q) =

∑
C
f δ

c (λc(q)) +
∑
B
fb(λb(q)) (6.3)

Since p is stable, no placement q within a sufficiently small neighborhood
simultaneously has λb(q) = Λb for all bars and λc(q) ≤ Λc for all cables.
Hence, for all such placements

H0(q) > H0(p) = 0. (6.4)

Choose ε > 0 such that the ball about p of radius ε , Bε(p), lies within
the neighborhood which ensures (6.4) and set

mε = min {H0(q) | q ∈ ∂Bε(p)}. (6.5)

Since each λe is quadratic,

Λ(Bε(p))−Λ(p) (6.6)

is bounded. Hence Hδ converges uniformly to H0 in the closed ball, and we
may choose ∆ so that

δ < ∆ ⇒ |Hδ(q)−H0(q) | < mε/2 (6.7)

for each q in the closed ball. This means, in particular, that each Hδ has a
minimal value on ∂Bε(p) greater than mε/2 for all δ < ∆.

Finally, we argue that the minimum of some Hδ occurs at an interior
point of Bε(p). For any δ we can find a neighborhood of p within this ball
such that each placement q in the neighborhood yields

λc(q) < (1 + δ) Λc and λb(q) < Λb + δ (6.8)

so that
Hδ(q) <

∑
C

(δ + δ2) +
∑
B
δ2 = (#C)δ + (#E)δ2. (6.9)

We have supposed δ < ∆ and we may reduce it further to ensure that the
bound in (6.9) is less than mε/2. Since points in the interior of Bε(p) yield
smaller values for Hδ than those on the boundary, the minimum occurs in
the interior. The function is smooth, so at the minimizer

0 = 5Hδ(q̂) =
∑
C
f δ

c
′
(λc(q̂))πc(q̂) +

∑
B
fb
′(λb(q̂))πb(q̂). (6.10)
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This list of derivatives provides a prestress for the structure at the point.
By construction of the functions f δ

c , the derivative of each always is positive,
so that this prestress is proper and strict4.

It is unlikely that the minimizing placement in the Proposition is p. So
we have not deduced that it must have a strict prestress. In fact one can
easily find counterexamples, ie stable placements which do not have a strict
prestress. However, it quickly follows that p has a non-zero prestress.

Theorem 6.2. If p is a stable placement for a tensegrity structure, then
there is a non-zero proper prestress for p.

Proof. For each sufficiently large integer n we use the previous result to find
a qn with ‖qn − p‖ < 1/n which has a strict prestress. Since prestresses
are homogeneous, we can choose each prestress to be on the unit sphere in
RE . The sequence of prestresses {ωn} on this compact set has a convergent
subsequence. Choosing this subsequence, without change in notation, we
arrive at a convergent sequence

(qn,ωn) −→ (p,ω∞)). (6.11)

The map
(q,ω) 7→ Π(q)ω (6.12)

is continuous, so that Π(p)ω∞ = 0, ie, ω∞ is a prestress for p. It is on
the unit sphere, and thus non-zero, and since (ωn)c > 0 for all c, the stress
which ω∞ assigns to each cable is non-negative.

6.2 The Stress Operator and Stability

We introduced the stress operator as the symmetric linear operator on R3N

given by
Ω =

∑
ωeBe (6.13)

We formalize the associated quadratic form as

σω(q) =
1
2

q � Ω q . (6.14)

Here we have used a subscript to emphasize that the potential depends
upon a specified stress vector. Later, we will suppress this notation, if ω is
understood.

4Note that if C were empty, we could not conclude that some stresses are non-zero.
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Introduction of Ω allows a dual approach to stability. One may consider
ω as the fixed element and ask which p one can associate to it.

The stress potential figures in the second-order stress test (Corollary
4.15); we would like to exploit the corresponding sufficient condition (Corol-
lary 4.18). We acquire some tools for its utilization in the following.

Proposition 6.3. Given a prestress ω and the associated stress potential σ

1. For any placement q

σ(q) =
1
2

∑
ωeBeq � q =

∑
ωeBeq � Beq = 2

∑
ωeλe(q) = 2ω � λ(q).

2. σ is Euclidean invariant: for any orthogonal Q,any vectors x and
y

σ(Q (q− x) + y) = σ(q)

for all q.

3. (p,ω) is a tensegrity pair iff

5σ(p) = Ωp = 0.

4. If (p,ω) is a tensegrity pair then

σ(p) = 0,

which is the same as ω � λ(p) = 0

5. If (p,ω) is a tensegrity pair then for any placement q

σ(q) = σ(q− p).

6. If ω is a null stress for some placement, then the null space of Ω is at
least 12-dimensional; hence σ cannot be positive-definite.

The proofs are immediate. For the last item, we recall that the subspace
of affine motions away from the tensegrity position has dimension 12.

Thus one quick conclusion is that each stress potential associated to a
placement will be stationary, with value 0 at that placement. Were this a
local minimum we could apply Corollary 4.18 to deduce that the placement
is stable. In fact, this cannot occur for unconstrained structures. However
Connelly [9] observes that this is true for a class of constrained structures
which he aptly calls spider webs.
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Proposition 6.4. Let a placement of a (necessarily constrained) structure
admit a strict positive prestress. Then it is stable.

Proof. Consider the tensegrity pair (p,ω). For any placement q the value
of the associated stress potential is

σ(q) =
∑
ωeλe(q). (6.15)

This means that if ω is positive and q is admissible then σ(q) ≤ σ(p). On
the other hand,

σ(q) =
∑
ωeλe(q− p), (6.16)

and if the two placements differ at all then σ(q) is positive. Thus there can
be no other admissible placements.

Note that we have proved more than stated: p is unique among admis-
sible placements.

Of course the restriction to positive prestress limits the direct applica-
bility of this result; one expects such a result only for constrained systems,
such as spider webs. Connelly and Whitely go on to exploit this in other
ways.

6.3 The Reduced Stress Operator

We approach the reduced stress operator of Connolly [9] by introducing a
different way of viewing the kinematics. Let us describe R3N as a tensor
product

R3N ↔ RN ⊗ R3 (6.17)

p ↔
∑
α∈N

ρα ⊗ pα , (6.18)

where (ρα) is the standard orthonormal basis of RN . Then it is easy to see
that

Be ↔ Ce ⊗ 1 (6.19)

where 1 is the identity on R3 and Ce is the edge-connection operator,
an automorphism of RN with standard matrix

ρα ρω

ρα

ρω


0 · · · · · 0
0 · 1 · −1 · 0
0 · · · · · 0
0 · −1 · 1 · 0
0 · · · · · 0


. (6.20)
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The operators Ce are symmetric, positive, and C2
e = 2Ce.

Now we can re-express the edge vector, for example, as

πe(p) =
∑
α

(Ce ρα)⊗ pα . (6.21)

More importantly, the stress operator now takes the form

Ω =
∑
e

ωeBe =

(∑
e

ωeCe

)
⊗ 1 = Ω̂⊗ 1 , (6.22)

where Ω̂ is the reduced stress operator ([12]), an automorphism of RN .
Its #N ×#N matrix can easily be seen to be sparse, with diagonal entries
the sum of the stresses at the appropriate node, and off-diagonal entries −ωe

at the locations involving the end-nodes of e.
It follows that

σ(q) =
1
2

q �
(
Ω̂⊗ 1

)
q

=
1
2

∑
α

∑
β

(qα � Ω̂qβ)δα � δβ

=
1
2

∑
α

qα � Ω̂qα . (6.23)

Thus the symmetric quadratic form σ is determined by the lower-dimensional
symmetrical quadratic form generated by Ω̂. This is an advantage in com-
putations. Because of the limitation observed for Ω we have

Corollary 6.5. The null space of Ω is

N ⊗ R3 , (6.24)

where N is the null space of Ω̂. Hence N has dimension at least 4.

7 Kinematic Constraints

In engineering applications it often occurs that one or more nodes of the
structure is constrained to move in particular ways. For example, one or
more may be constrained to a fixed position or to move only along a line
or within a plane; in Figure 4 we consider a constrained version of T3. A
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Figure 4: Constrained T-3 Structure

constraint of this sort may serve as a means to eliminate the possibility
of rigid motion of the structure, but, as is the case pictured here, often the
constraint is more restrictive. We consider kinematic constraints of the form

p ∈ b + X b ∈ X⊥ (7.1)

restricting placements to an affine subspace of R3N . It follows that the
admissible velocity space now should be restricted to X . For a constrained
structure the admissible class of rigid body motions consist in those that
which respect (7.1), and hence we define the space of restricted rigid
velocity fields as

RX := X ∩R(p). (7.2)

Its orthogonal complement in X is

R⊥
X := X ∩ (RX )⊥ = X ∩

(
R⊥ + X⊥

)
. (7.3)

We define the orthogonal projection

P : R3N → X , (7.4)

and note that
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Lemma 7.1. For any subspace W,

PW = X ∩
(
X⊥ +W

)
. (7.5)

It follow that
R⊥
X = P

(
R⊥

)
. (7.6)

Even if the placement is restricted by (7.1), the edge vectors πe need not
be in X , so we define the constrained edge vectors and the constrained
geometric matrix as

ψe := Pπe; Ψ := PΠ. (7.7)

Notice that if a node is restricted not to move then the corresponding row in
Π is eliminated by the action of P ; if the constraint renders an edge immobile
then the corresponding column vector still is present, but in practice might
as well be omitted. We see then that

Corollary 7.2. Each constrained edge vector is in R⊥
X .

Also, it now follows that the constrained geometric matrix is the trans-
pose of the gradient of the length function λ as restricted to the subspace
(7.1).

Working within the constrained subspaces, the notions of stability and
rigidity can be be redefined and it is immediate that

Proposition 7.3. If a structure described by Π is rigid then the constrained
structure described by PΠ is rigid; if it is stable then so is the constrained
structure.

Naturally, the converse is false.
Next, we turn to the forces. A reaction force r is an external force

which does no work under any admissible velocity field, that is, r ∈ X⊥.
For example, if a node is fixed in space, every force applied to that node is
a reaction force, while if it is constrained to travel in one direction, reaction
forces are external forces normal to that direction. Reaction forces are gen-
erated by the constraint exactly sufficiently to maintain the constraint. For
constrained structures we distinguish applied forces which lie in X from
the total external force, which includes reaction forces.

An applied force is said to be X -equilibrated if it is in R⊥
X and we

have that such a force always is equilibrated in the global sense by reaction
forces:
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Proposition 7.4. If the applied force f ∈ X is X -equilibrated, then there is
a reaction force r ∈ X⊥ such that f + r is equilibrated, ie, such that

f + r ∈ R⊥. (7.8)

This follows immediately from Lemma 7.1 Of course, any equilibrated
external force resolves into an equilibrated applied force plus a reaction force.
Since the constrained edge vectors are in R⊥

X , it follows that any stressing
of the structure results in an equilibrated applied force, and the definition
of statical rigidity can be modified to the constrained case.

By replacing R3N by X , one can easily see that the various results shown
for the unconstrained system extend without change to the constrained one.
In particular, we note that if p = b + x then

ψe = Beb +Bex, (7.9)

so that if we restrict to the constraint space the stress operator becomes

Ω̃ = PΩP =
∑

PBeP , (7.10)

and we operate with this on the subspace X .

8 Tensegrity and Rank-deficiency

8.1 Snelson Structures and Maxwell’s Rule

Consider that

Rank(Π) = dim Span {πe | e ∈ E} ; (8.1a)

Span {πe | e ∈ E} ⊂ R⊥. (8.1b)

Thus the rank of Π is at most the minimum of #E and 3#N − 6. In this
section we consider the case in which the structure satisfies

#E ≤ dimR⊥ = 3#N − 6 , (8.2)

ensuring that the list of edge vectors could be linearly independent. We
say that such a structure is a Snelson structure, since this condition is
satisfied by all of the classical constructions by him and many of those of
Fuller. Their virtue, aesthetic to the one and efficient to the other, was that
these were minimal structures.

Consider the case in which the set of edge vectors for the given placement
is linearly independent. This ensures that there can be no prestress, and
hence, by Theorem 6.2, that the placement cannot be stable.
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Proposition 8.1. If a Snelson structure is not a bar-truss, any placement
in which the geometric matrix is of maximal rank is unstable.

Given a placement p, the set Vo of isometric admissible velocities de-
composes into the sum of two subspaces. The first is the subspace of rigid
velocities R and the second is Vo ∩ R⊥, which we may call the space of
flexures. The latter has dimension dimR⊥ − Rank(Π), often called the
degree of flexure. Similarly, the degree of deficiency is #E −Rank(Π), ie, is
the dimension of the space of prestresses. The statement that the rank of
the matrix Π is the same as that of its transpose is often called Maxwell’s
rule [5]:

#E −#modes of prestress = 3#N − 6−#modes of flexure (8.3)

or

#modes of flexure−#modes of prestress = 3#N − 6−#E .

Since we assume that #E ≤ 3#N − 6, we conclude that

Proposition 8.2. If a Snelson tensegrity structure is stable, it is flexible,
ie, admits a non-rigid velocity which preserves lengths.

This is the characterizing property of Snelson tensegrity structures.

8.2 The Geometry of Rank-deficient Structures

We deal here with a Snelson structure.
We have had occasion to deal with the length-invariance manifold:

given p, it is
Ap = { q ∈ R3N |λ(q) = λ(p) } . (8.4)

This closed subset of R3N is (locally) a differentiable manifold when the rank
of Π> = 5λ is constant on A in a neighborhood of p. If p is stable, then
it must be true that some neighborhood of p, Ap includes only elements
of Euc(p) and hence that this open set is a differentiable manifold whose
tangent space at p consists exactly in R(p).

A different concept is that of the rank-deficiency manifolds. First, we
define

P =
{

q ∈ R3N |Rank(Π(q)) = dim Span
(
πe(q)

)
e∈E < #E

}
. (8.5)

As we have observed, this closed set includes all stable placements. But also
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Lemma 8.3. Any neighborhood of a stable placement contains other points
of P.

This follows from Proposition 6.1: every neighborhood of the placement
includes stressed placements.

The set P partitions into subsets with specified rank, the rank-deficiency
manifolds:

Pr = {p ∈ P | rank(Π(p)) = #E − r}, 6 ≤ r ≤ #E . (8.6)

We deduce the structure of the sets from that of the corresponding sets
of singular matrices. We introduce a more generic notation to describe the
latter. Let k and n be integers, with k ≤ n. Then for each s ≤ k we
introduce

Ms = {D ∈ Rn×k | rank(D) = s}. (8.7)

We continue to write the matrix D in terms of its column vectors, staying
with our notation

D = [π1 · · ·πk] . (8.8)

The set Mk is an open set in the set of all n × k matrices (the Steifel
manifold), but each of the smaller ones is a differentiable manifold of re-
duced dimension (generalized Stiefel manifolds). These were introduced
by Milnor [35, 39], but since they do not seem to be well known, we will
derive the formulae which we need. The simplest case, when the rank is
k − 1, is a model for the other calculations:

Lemma 8.4. Mk−1 is a differentiable manifold of dimension (k−1)(n+1).
Its tangent space at D consists of all n× k matrices orthogonal to

v⊗ ω (8.9)

where ω is a non-zero vector in the null space of D and v ranges over all
vectors in the null space of D>.

Proof. To describe the tangent space: a matrix D = [π1 . . .πk] is in the
manifold if the span of its column vectors is of dimension k − 1 but

π1 ∧ . . . ∧ πk = 0. (8.10)

Consider a path on the manifold passing through D. Taking its derivative
at the base point delivers∑

i

π1 ∧ . . . ∧ αi ∧ . . . ∧ πk = 0, (8.11)
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where αi, the derivative of πi, appears in the ith place in the list. One of
the vectors πl can be expressed as a linear combination of the others; to
save notation, let us suppose it is the kth:

πk =
k−1∑

j

µjπj , (8.12)

so that ω has entries [−µ1, . . . ,−µn, 1]. Then

k∑
i

k−1∑
j

µjπ1 ∧ . . . ∧ αi ∧ . . . ∧ πj = 0. (8.13)

Note that each exterior product is zero, due to repeated entries, except when
i = j or i = k. Thus we have

π1 ∧ . . . ∧ πk−1 ∧ αk +
k−1∑

i

µiπ1 ∧ . . . ∧ αi ∧ . . . ∧ πi = 0 (8.14)

or

(π1 ∧ . . . ∧ πk−1) ∧ αk +
k−1∑

i

−(π1 ∧ . . . ∧ . . . ∧ πk−1) ∧ (µiαi) = 0. (8.15)

But this says that

(π1 ∧ . . . ∧ πk−1) ∧
(
αk −

k−1∑
i

µiαi

)
= 0, (8.16a)

or, recalling the relation of the µi and ω,

(π1 ∧ . . . ∧ πk−1) ∧ (Aω) = 0, (8.16b)

where A = [α1 . . . αk] is the derivative at the base point. (8.16b) means that
Aω is in the span of the other vectors, ie, in the range of D, which can be
expressed as saying that

v � Aω = A � (v⊗ ω) = 0 (8.17)

for all vectors v in the null space of D>.

The proof extends, with only an increase in combinatorial complexity,
to each of the manifolds Ms by considering the smaller submatrices and
considering the wedge products of s-lists of column vectors. We obtain
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Lemma 8.5. Ms is a differentiable manifold of dimension s(k+n− s). Its
tangent space at D consists of all A orthogonal to

v⊗ ω (8.18)

where ω ranges over all vectors in the the null space of D and v ranges over
all vectors in the null space of D>.

Now we pull this structure back to R3N . Let us introduce the mapping

B : R3N → R3N×E (8.19)

which assigns to each placement the corresponding Π; identifying R3N×E

with R3#N×#E , we see that

Pr = B−1(M#E−r) . (8.20)

Lemma 8.6. The null space of B is

NB := {u ∈ R3N |u ∈ R3} , (8.21)

and hence is 3-dimensional. The range of B, of dimension 3#N − 3, is

RB :=

{∑
E
Bew⊗ ee

∣∣∣w ∈ R3N
}

(8.22a)

=
{

u⊗ µ
∣∣∣∑µeBeu = 0

}⊥
. (8.22b)

Here (ee)E is the standard basis of RE .

Proof. Bp = 0 says exactly that for each e, Bep = 0. But Bep = 0 if
and only if peα = peω . We have assumed our structures are connected, and
hence each entry in p has to have the same value. Hence the null space has
the indicated form.

Regarding the range, note that by definition

Bw =
∑

Bew⊗ ee

so (8.22a) is immediate. For the second form we need to represent B>. Given
q ∈ R3N and u⊗ µ ∈ R3N×E , we find

B>(u⊗ µ) � q = (u⊗ µ) � Bq

= (u⊗ µ) �
∑

Beq⊗ ee

=
∑
µeBeq � u =

∑
µeBeu � q

=
(∑

µeBeu
)

� q .
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Thus we can characterize the null space of B> as the span of those dyads
u ⊗ µ with (

∑
µeBeu) = 0. The range of B is the orthogonal complement

of that subspace.

By (8.20) each Pr, if not empty, is a differentiable manifold, the preimage
under B of the intersection of the manifold M#E−r with the subspace RB.
If this intersection is not empty (equivalent to Pr being empty) it cannot
consist of a single point. For if Bp is in the intersection, we recall that for
any L ∈ GL(R3) and each e ∈ E , BeLp = LBep so that LBp is in RB. But
as a linear endomorphism of R3N , L still is invertible, so that Bp ∈M#E−r

implies LBp ∈M#E−r, yielding a family of other points in the intersection.

Theorem 8.7. If not empty, Pr is a differentiable manifold in R3N , whose
tangent space at p is the set of vectors normal to the span of∑

e

ωeBev = Ω(ω)v, (8.23)

where ω ranges over all prestresses and v ranges over all flexes.

Proof. First, note that elements of NB satisfy the criterion (8.23) since each
Be annihilates all constant-entry vectors in R3N .

The tangent space of RB∩M#E−r consists in those vectors in RB normal
to the various v ⊗ ω at the point. Hence the pull-back tangent space at a
placement is

TpPs = {w | (v⊗ ω) �
∑
e

Bew⊗ ee = 0 for all ω, v}

= {w |
∑
e

v � Bew ωe = 0 for all ω, v}

= {w | (
∑
e

ωeBev) � w = 0 for all ω, v}. (8.24)

Since the sum
∑

eωeBev is zero for all rigid velocities, the only non-zero
combinations

∑
eωeBev occur when v is a flex.

Lemma 8.8. The tangent space to Ps at p includes the set of rigid velocities
R(p).

Proof. Given ω and v and Qp + r, we note∑
e

ωeBev � (Qp + r) =
∑
e

(ωeBev � Qp ) +
∑
e

(ωeBev � r)

=Q

(∑
e

ωeBep

)
� v +

∑
e

(ωev � Ber) = 0 + 0
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We expand on the discussion just prior to the theorem to observe that the
various manifolds Pr are invariant under a simple group of automorphisms
(cf [63]). Given L ∈ GL(R3) and r ∈ R3, the affine automorphism u 7→ Lu+r
factors as Be (Lp + r†) = LBe p. This then leads by easy computations to
the following.

Proposition 8.9. Pr is invariant under the group of affine automorphisms
described above, and

• the set of null stresses at Lp + r ∈ Pr is the same as that at p ∈ Pr,

• the cone of admissible vectors and the space of isometric admissible
vectors at Lp + r are given by L−> acting upon the corresponding sets
of vectors at p, and

• the tangent space to Pr at Lp + r is given by L acting on the tangent
space at p.

The proof is straightforward.
Note that the invariance of the stress vector ω under affine automor-

phisms does not imply that the actual tensions and compressions in the
members stay the same. The force carried by edge e is

√
λeωe and thus will

change if the automorphism changes the length of the edges. The exception
to this observation is the set of Euclidean isomorphisms; in particular we
note that the rank-deficiency manifold passing through a placement p is an
isomorphic image of that passing through the corresponding fixed placement
in Rep, and the two have the same member-tensions and -compressions.

8.3 A Marching Algorithm

The characterization of the tangent space to Pr can prove useful in de-
scribing traversal of the surface through manipulations of edge-lengths of
a structure. Let us consider a special case, one which describes all of the
structures built by Snelson. We assume that the structure satisfies

#E = 3#N − 6 , (8.25)

so that it is truely optimal. To avoid the inconvenience of dealing with
the representation of the six coordinates describing the rigid motions, let us
work in Rep.

Consider a placement p ∈ P1 (so that there is “only one” prestress ω
and flex v.
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Proposition 8.10. If at p ∈ P1 for each admissible flex we have

v �
∑

ωeBev 6= 0 (8.26)

then there is a coordinate system in a neighborhood of p consisting of edge-
lengths.

Proof. We denote the normal to P1 at p as

N =
∑

ωeBev, (8.27)

and note that the tangent space T has dimension #E − 1. The range of
Π is of the same dimension, and equation (8.26) says that the normals to
the two subspaces are not orthogonal. But then it follows that each edge
vector projects non-trivially onto T : it is impossible that πe = (πe � N) N
since πe 6= 0 is orthogonal to v and N is not. Thus a collection of linearly
independent elements of (πe)e∈E projects onto a basis for T . The same
collection remains linearly independent and spanning in a neighborhood of
p on P1, so that their integral curves form a coordinate system.

It is worth noting that if a path from p ∈ P1 leaves that surface then it
cannot be admissible: in each open neighborhood of p all points not on P1

have Π of full rank, and no prestress, so there can be no admissible velocity.
This gives another interpretation of the second-order stress test (4.18): it
ensures that under these circumstances no admissible path can leave the
manifold, while on the manifold lengths must change on any path.

The previous result gives a convenient way of generating new stable
placements from a given one. It is easy to construct a path on the P1

manifold by simultaneously shortening and lengthening two or more edges
in order to remain on the manifold. Moreover, given the continuity of the
null-spaces, the set of stable placements is open, so that the process does
not abruptly result in an unstable position. This leads (cf [65]), in the case
in which two edges are modified at one time, to differential equations∑

e

ωeBev �
�
q = 0 (8.28)

πe �
�
q = 0 for all e but two (8.29)

πeo
�

�
q = 1 for a chosen eo. (8.30)

These can be solved numerically: at each time-step the placement must be
corrected to ensure precise placement upon the manifold, but this is easy to
do, and the results enable construction of a sequence of stable placements.
An illustration such a process, for T-3 with a fixed base, is in figure 5.
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Figure 5: The Starting Placement and Two Subsequent Ones in a Numerical
Solution
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