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Abstract

Multi Disciplinary Optimization (MDO) problems are often encoun-
tered in many industrial areas. MDO refers to the optimization of systems
of subsystems (disciplines). The optimization of the full system is often
reduced to a hierarchy of optimizations at subsystem and system levels.
This paper presents a concise survey of major MDO approaches and dis-
cusses opportunities of parallel processing (PP) at four algorithmic levels
of the approaches, i.e., the subsystem solver level, the subsystem opti-
mization level, the full system optimization level, and the sequence of
problems level. Advantages of different PP implementations of the MDO
approaches are outlined. Special emphasis is put on vertical PP process-
ing, where one thread treats a hierarchical structure (e.g., a full system
evaluation), inter-thread communication is low, and processor loads are
uniform.

1 Introduction

With the increase of computer power, multi disciplinary optimization (MDO),
that usually refers to the optimization of systems of subsystems, became largely
used in industry, ([1], [2], [27]). Common industrial examples of subsystems in
a large system are: departments in a company; different disciplines in an anal-
ysis code, e.g., flow and structures; parts or components of a CAD assembly;
physical subsystems of a complex system; subsystems of equations describing
different models in a complex model etc. The systems and subsystems are usu-
ally simulated by analysis codes. The optimization of such a system may be a
time consuming task. Classical optimization approaches are often replaced by

1



more efficient hierarchies of optimizations that couple optimizations of individ-
ual subsystems into a full system optimization. Parallel processing (PP) can be
used at analysis level or at different optimization levels ([3]).

Without restricting the generality of the presentation, it will be assumed that
the systems and subsystems are modeled by systems of equations, that usually
are PDEs, algebraic, or integral equations. Such systems will be denoted further
by

f(p, x, y, z) = 0 (1)

where f may represent the physics of the system and may be simulated or solved
by specialized analysis codes that could be of black box type. The variables x
and y are the optimization parameters or design variables. The vector x de-
notes system level parameters or shared parameters. e.g., that are common to
two or more subsystems. The vector y contains subsystem parameters or local
parameters, i.e., y = (y1, ..., yn) where each vector yi contains the optimiza-
tion parameters that belong only to the subsystem Si. The vector p defines a
parametric class of problems, i.e., for each p value there is one system of type
fp(x, y, z) = 0, and an optimization problem has to be solved with an objec-
tive Qp(x, y, z). The vector p may define a sequence of optimization problems,
e.g., for trade off studies, architecture optimization, or p may define operating
regimes of the full system, i.e., are multi-point type parameters. They are used
by all subsystems but are not optimization parameters. The vector z represents
state variables computed by solving equation (1) for given p, x, y, hence z can
be regarded as a function of p, x, y. A part of the z variables have a special
role, they are the subsystem inputs and outputs. These parameters are called in
different ways, such as input/output variables, coupling variables, communica-
tion variables, or subsystem interactions. The couplings do not allow individual
subsystems to be optimized independently for a full system optimization, and
may be involved in serious efficiency challenges for PP implementations. The
parameters may be continuous or discrete, and are constrained by bounds:

pL ≤ p ≤ pU , xL ≤ x ≤ xU , yL ≤ y ≤ yU , zL ≤ z ≤ zU (2)

The optimization of a given system requires minimizing an objective Q:

minQ(p, x, y, z) (3)

The optimization in (3) is performed over a set of parameters x, y satisfying
the constraints (1), (2) and

h(p, x, y, z) ≤ 0 (4)

The functions h in (4) often impose constraints on the outputs, (e.g., the outputs
should be physically realistic). An array (p, x, y, z) is called feasible if it satisfies
(1,2,4), i.e., it is a solution of the system (1) and satisfies constraints (2,4).

To distinguish between variables or functions associated to different subsys-
tems Si , they will get indices i such as fi(pi, xi, yi, zi), Qi, hi.

The full MDO problem to be solved is (1-4), where f incorporates all systems
of equations modeling the subsystems, for all variables and all constraints (4).

2



The functions f, Q and h can be nonlinear, hence the problem (1-4) may involve
nonlinear optimization approaches. The constrained optimization problem (1-
4) may present local minima, hence a global optimization for finding a global
minimum or for finding multiple good local minima is required.

Multi-objective versions of the problem (1-4) can be considered as well, in
which case Q in (3) denotes a vector of objectives to be optimized ([7]).

Classical optimization approaches for solving problems of form (1-4), use a
single optimizer that calls a full system solver for each fixed set of parameters
(p, x, y) ([5]). These ”All-at-Once” approaches, are often inefficient due to the
prohibitively long computing time that may be required by full system solvers.
This motivated the development of the more efficient MDO techniques that
decompose the system, and call individual subsystem solvers. MDO techniques
may handle very large hierarchical systems that could not be treated by All-at-
Once approaches. MDO techniques may benefit a lot from parallel processing
(PP) that can be used in multiple ways in particular MDO implementations as
discussed further (see also [12], [22]).

2 Parallel Algorithm Design Considerations

This section discusses conditions to be met by PP architectures and algorithms
to attain increased efficiency. These conditions are further used to choose some
MDO PP implementations against others.

Two paradigms were imposed by the hardware architecture in the parallel
processing world: (a) the SMP computer has a number of processors with uni-
form access speed to the entire memory, the communication between threads be-
ing done through shared memory and the synchronization through semaphores;
(b) the network of computers that is composed of processors which have a much
faster access to a certain local memory segment, the communication and the
synchronization between threads being done through messaging.

Despite fundamental differences in the way the two paradigms work, the
conditions to have an efficient parallel algorithm boil down to attaining:

• minimal communication between threads - realized through a good parti-
tioning of the algorithm;

• efficient use of the processor time - realized by a good allocation of the
computing time on different processors and good synchronization policies
between threads.

It is well known, ([15]), that the parallel algorithm performance is highly
dependent on the configuration of the hardware it runs on. However, the practice
shows that an algorithm cannot be fine tuned to become efficient unless the
above requirements are fulfilled.

Complex industrial design tasks, which usually imply optimization, can be
parallelized and practically solved only if they are split in weakly coupled sub-
tasks layered on several levels. Imitating that structure, the algorithm to solve
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the task can be programmed in the same level structured way in a parallel im-
plementation. This means that both the parallel processing structure and the
algorithm structure are reflections of the task structure. The main PP virtue
of the MDO approach is that it offers clear indication about how to do the
partitioning of the algorithm such that the two conditions are satisfied, i.e.,
communication between threads is minimized and the use of processor time is
optimized.

3 Hierarchical Parallel Processing in MDO Ap-
proaches

This section describes a hierarchy of four PP levels for the problem (1-4). The
levels are:

1) the subsystem analysis level (or solver level) where systems fi = 0 are
solved for each subsystem Si;

2) the subsystem optimization level where objectives Qi are optimized for
parameters yi;

3) the system optimization level, where the objective Q is optimized for
parameters x; and

4) the sequence of optimizations level, e.g., at a multi-point optimization
level, where a set of optimizations is performed for different values of p.

Traditional PP implementations refer to the first two levels. Levels 3 and 4
refer particularly to MDO problems and usually involve a hierarchy of optimiza-
tions. In principle, one may use PP at all four levels, but, contrary to common
practice, this may not be the most efficient most robust, generic, and easy to
code approach. For example, using PP at level 1 in global optimization MDO
problems may not be efficient even when a very large number of processors is
available. This paper discusses the four level PP for major MDO approaches
and emphasizes the efficiency of using PP at levels 3 and 4 instead of using PP
at levels 1 and 2.

In [11], PP continuous optimization issues are discussed, including MDO
optimization. The MDO discussed there uses a single optimizer for the whole
system, although multiple analysis subsystems are considered. We refer to that
paper for details of treating subsystem interactions. In this paper, multiple opti-
mizers are considered, e.g., at subsystem, system, and sequence of optimizations
(multi-point) levels.

The description of the four PP levels follows.

3.1 PP at the Subsystem Analysis Level

On the subsystem analysis level, the systems of equations fi(p, x, yi, zi) = 0
of the different subsystems Si are solved for zi using PP. The p, x, yi are
fixed. Most techniques discussed in literature may be used here, e.g., parallel
algorithms for systems of algebraic equations, domain decomposition techniques,
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etc. The use of PP at this level is usually inefficient due to the large inter-
thread communication overhead. An algorithm using PP at this level may not
be robust. If one of the threads is interrupted, the entire computation may
have to be reconsidered due to the strong inter-dependence between threads.
All available processors may be used much more efficient at higher levels.

3.2 PP at the Subsystem Optimization Level

On the subsystem optimization level, the subsystems Si are optimized for the
objectives Qi(p, x, yi, zi) for the local parameters yi (keeping x and p fixed).
The many useful PP techniques and discussions from [11] can be applied here.
A subsystem optimization may be local or global, it may be based on derivatives
, e.g., quasi Newton approaches, or on derivative free approaches, e.g., pattern
searches, ([11], [22]). The gradients are usually approximated by finite differ-
ences that may be computed in parallel and do not need inter-thread interaction.
Line searches and pattern searches may be performed in parallel too.

Global optimization of subsystems may be deterministic or stochastic, ([16],
[22], [29]). Most of these approaches are easy to parallelize at very low inter-
thread communication. E.g., deterministic grid searches can be performed in
parallel, and stochastic searches based on generation of random samples over
the domain (e.g., genetic algorithms, simulated annealing, cluster techniques)
may be performed in parallel too, for any number of processors. Branch and
bound type techniques can also be efficiently applied in parallel, ([4]).

3.3 PP at the System Optimization Level

On the system optimization level, the full system is optimized for the objective
Q(p, x, y, z) and parameters x, by calling subsystem optimizations. The p are
fixed. The PP techniques for optimizing the system are the same as for the
subsystems. The parameters x usually are common to several subsystems. In a
generic MDO, the system optimizer sends the x to subsystems that get optimized
by local parameters (yi for subsystem Si) keeping the system parameters x
fixed. The results of the subsystem optimizations are used further for system
optimization. During the system optimization, the subsystems may be analyzed
or optimized in parallel. If a global optimization is performed at system level,
it may be inefficient to optimize different subsystems by different processors
since the optimization times may differ strongly. Instead, one may perform full
system evaluations by different processors for different parameter values x. In
this way, the processors get loaded uniformly.

3.4 PP at the Sequence of Optimizations Level

On the sequence of optimizations level, e.g., at a multi-point level, optimizations
are performed calling system optimizations for different p values. For multi-
point optimization, ideally, a system should be optimal for each value of the
point (operation/regime) parameter p. This is usually not possible, so one has
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to define a compound objective to be optimized, using different p values, and
the resulting problem is again a global optimization problem. This optimization
should call multiple full system optimizations, hence it can substantially use PP
in both local and global optimizations. The number of optimization levels can
be increased, each level calling optimizations from the lower levels. On each
level, the same optimization techniques as on system level are used.

4 PP for Several Generic Classes of MDO Ap-
proaches

MDO approaches can be classified in many ways, ([1], [2], [3], [6], [8], [27]).
This section mentions generic classes of MDO techniques and discusses PP im-
plementations for them. For all classes, PP can be applied at the four mentioned
levels, as described in the previous section. In addition, different classes have
specific features that allow particular PP for higher efficiency. A given MDO
implementation may belong to several classes and may combine different PP
techniques.

Sequential Optimization, Simultaneous Optimization, and Hierar-
chical Optimization are generic and the most often used MDO approaches.
In a sequential optimization of a system, the different subsystems are optimized
one by one, each optimized subsystem sending its outputs to the other subsys-
tems. In a simultaneous optimization all subsystems are optimized in parallel
and the outputs are sent all at a time. Hierarchical optimization approaches
couple subsystem optimizations in a hierarchical level structure, optimizations
on higher levels being based on results of optimization on lover levels. The
system optimization described in previous section is an example of hierarchical
optimization. Sequential and simultaneous approaches are efficient especially
for subsystems with weak interactions, i.e., changes in one subsystem do not in-
fluence strongly another subsystem. They may be less efficient when subsystems
are strongly coupled. Hierarchical optimization can be used to address subsys-
tem interactions at system level in a robust way. Sequential, simultaneous and
hierarchical approaches are often combined together. PP can be directly applied
for simultaneous optimization, e.g., each processor optimizing a different sub-
system. Sequential and simultaneous optimizations can be easily combined, for
example, in a sequence of simultaneous optimizations, several groups of subsys-
tems can be processed sequentially while all subsystems in a group are processed
simultaneously. PP may be used in many ways in a hierarchical optimization,
in addition to the different possible PP treatments of simultaneous or sequential
optimization on different levels. Generally speaking, PP in MDO approaches
may involve two main types of parallel computations:
1) horizontal threads or horizontal parallel computations performed on one of
the levels, and
2) vertical threads or vertical parallel computations, where a hierarchical com-
putation involving more levels is assigned to one thread. Sequential and simul-
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taneous computations on a single level would require horizontal threads. The
horizontal PP usually requires much more communication than vertical PP. One
can perform simultaneously a set of vertical threads with little communication.

Combinations of Global and Local Optimization MDO approaches
perform global or local optimizations at different levels of the MDO. While many
optimization approaches combine global optimization algorithms with local op-
timization algorithms for one given problem, (see for example [5], [14], [16],
[19], [24], [25]), in MDO different optimization techniques may be applied for
different problems corresponding to different subsystems. PP can be efficiently
used in the often encountered case when global optimization is performed at
system level while local optimization is performed at subsystem level. Each
thread could evaluate the full system for different values of x (the same for p in
multi-point formulations).

Multi-Objective MDO approaches are MDO approaches where the sys-
tem (or some of the subsystems) have multiple objectives qj , j = 1, ...,m, ([7]).
All qj are considered here objectives of the same subsystem Si, for a fixed i (i.e.,
qj are the components of the vector objective Qi), as opposed to the notation
Qi that denotes objectives of different subsystem Si. The objectives qj can be
lumped together in one compound objective to reduce the problem to a classical
single objective optimization, e.g., by a weighted sum of objectives by factors
wj :

q =
∑

j

(wj qj) (5)

Different solutions (x, y, z) can be obtained for different weight values wj . PP
can be used by allocating to each processor an optimization problem with a
different weight value. In goal programming, only one of the objectives qk is
optimized while the other ones are used as constraints, e.g., set to fixed goal
values qj = cj or qj ≤ cj . PP can be used efficiently choosing different goal
sets {cj} for different processors. For multi-objective optimization, an optimal
solution u = (p, x, y, z) is a point such that in a neighborhood of u there is
no other point v which is better than u with respect to all objectives, i.e.,
qj(v) < qj(u) cannot hold for all objectives qj . This means, that any other v is
worse than u with respect to at least one objective. In the space of objectives
(qj(u))j=1,...,m, the optimal solutions lie on a boundary P , called Pareto frontier,
of the set S = {(qj(u))j=1,...,m‖u in U} where U is the full parameter set. People
usually wish to investigate the Pareto frontier P . PP is a good option for this
task, since multiple points on the frontier can be found in parallel by different
processors, one often used technique being the mentioned optimization of the
weighted sum of objectives that produces one point on the frontier for each fixed
set of weights.

Surrogate Models MDO approaches combine optimizations of original
high complexity models f with approximations (surrogates) f ′ of f , where f ′

can be computed in shorter time than f ([9], [10], [17], [18], [26]). For example,
the full system is often represented by surrogates, such as response surfaces,
reduced order models, linearizations, coarse models, while subsystems may be
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represented by high fidelity models. Global optimization may be performed
using low fidelity models, while local optimization may be used for high fidelity
models to improve the solutions found by low fidelity model optimizations. PP
can be used very efficiently for many parallel evaluations of the surrogates,
e.g., in a hierarchical grid search, on a sequence of coarser and finer grids. PP
can also be used to generate many surrogates simultaneously, e.g., to generate
local response surfaces in different design regions. The interaction between such
computations is minimal.

Sensitivity based MDO approaches use sensitivities in the design of MDO
optimizers, (e.g., how variables influence objectives, constraints, states, and
outputs, [23], [28]). Sensitivity based approaches may be very efficient, may
incorporate reduced models based on sensitivities, and may use the same objec-
tive or compatible objectives for all subsystems (which eliminate the conflicts
of different subsystem optimizations). For example, in the BLISS approach,
([28]), sensitivities of the system objective Q with respect to the subsystem
parameters y are computed, DQ/Dy, and used to define linearized subsystem
objectives that are used to optimize the subsystems. Then DQ/Dx are com-
puted and used to linearize the system objective for a system optimization. The
special input/output coupling variables, that are part of z, and their derivatives
with respect to x, y, Dz/Dy, Dz/Dx, are used for the sensitivity computations
applying the chain rule. For this type of approaches, PP can be used efficiently
for the sensitivity approximations by finite differences.

Discrepancy Minimization MDO approaches, in a simplified explana-
tion, reduce equality constraints to minimization formulations, e.g., an equation
constraint as a = b could be replaced by a residual minimization min(a− b)2.
Collaborative optimization, is an MDO approach from this class, ([21], [26]) that
eliminates direct subsystem interactions. During optimization, the system sends
the system variables x to a subsystem Si. The Si, in addition to its local opti-
mization parameters, yi, gets optimization parameters xi that are local versions
of the system parameters x. The optimization of Si has an objective to mini-
mize the discrepancy between x and xi, e.g., to minimize Qi(xi, yi) = (x− xi)2

with constraints given by fi and hi. This may be interpreted as: the system
sets a task x that has to be satisfied as well as possible by the subsystem Si.
The system optimization minimizes Q(x) with additional constraints Qi = 0 or
Qi < ε. Subsystem interactions may be treated by minimization as well, e.g.,
instead of setting zi = zj meaning that the output from Si equals the input from
Sj , one may define an optimization min(zi − zj)2. Particular for this class of
approaches, PP can be used to optimize the subsystem interactions. In actual
PP implementations, each processor should solve the problem associated with
one subsystem, or a group of subsystems. The relation and the communication
between threads should follow the hierarchy of the particular MDO algorithm.
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5 Conclusions and Discussion

Four MDO computational levels have been separated, that correspond to: the
subsystem analysis, the subsystem optimization, the system optimization, and
the multi-point optimization. PP options that are applicable at different com-
putational levels have been described, and their efficiency has been discussed for
major classes of MDO approaches. MDO codes for complex industrial optimiza-
tion tasks can be efficiently implemented using PP as long as the communication
between threads is kept at low levels and the processor time is effectively used.
To achieve this, MDO approaches should decompose the full system into weakly
interacting subsystems. PP algorithms can be efficiently implemented for such
MDO structures since the communication between threads is low for weakly
coupled subsystems if every thread is solving a different subsystem. This is a
system level (level 3) PP implementation where each thread should handle a
hierarchy of optimizations and analysis tasks. Such a hierarchical PP should be
more efficient than a classical single level PP approach that is heavily applied to
the analysis codes or to a subsystem optimization (on levels 1 and 2). Single level
approaches often require important communication between threads. They are
often hard and unnatural to program because they artificially split subsystems.
By contrast, the hierarchical approaches follow the natural, physical structure
of the system, avoiding most of the above problems.

A crucial issue is the robustness of PP algorithms with respect to thread
failures. A hierarchical PP approach can be made robust much easier than the
single level PP approaches. While in the hierarchical approach a thread failure
may be easily rescued by restarting the thread, in a single level approach it may
be hard to implement a rescue, and one may need to rerun the whole task.

Summarizing the above discussion, MDO PP approaches involve two main
types of PP computations: horizontally, on each level, (as in levels 1 and 2) and
vertically where a hierarchical computation involving more levels is assigned to
one thread (as in levels 3 and 4). The horizontal PP usually requires much
more inter-thread communication and unbalanced processor loads than the ver-
tical PP. Heavy and complicated communication takes place at analysis level
or at subsystem interaction level in horizontal PP. On the other side, different
vertical threads in a PP approach usually have little communication between
them. For example, in global optimization, each vertical component (thread)
may evaluate the whole system for another set of parameters. Such vertical
threads have practically no communication between them. The same argument
holds for large classes of MDO applications where the described vertical PP
MDO implementations may be efficient. Such applications include: multi-point
optimization, multi-objective optimization, trade off studies, feasibility studies,
sensitivity studies, designs of experiments, uncertainty analysis, architecture
optimization, safety studies, and robust design.
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