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Abstract

In this study we develop a gradient theory of small-deformation single-crystal plasticity that
accounts for geometrically necessary dislocations (GNDs). The resulting framework is used to dis-
cuss grain boundaries. The grains are allowed to slip along the interface, but growth phenomenona
and phase transitions are neglected. The bulk theory is based on the introduction of a microforce
balance for each slip system, and includes a defect energy depending on a suitable measure of GNDs.
The microforce balances are shown to be equivalent to nonlocal yield conditions for the individual
slip systems, yield conditions that feature backstresses resulting from energy stored in dislocations.
When applied to a grain boundary the theory leads to concomitant yield conditions: relative slip
of the grains is activated when the shear stress reaches a suitable threshold; plastic slip in bulk at
the grain boundary is activated only when the local density of GNDs reaches an assigned thresh-
old. Consequently, in the initial stages of plastic deformation the grain boundary acts as barrier to
plastic slip, while in later stages the interface acts as a source or sink for dislocations. We obtain an
exact solution for a simple problem in plane strain involving a semi-infinite compressed specimen
that abuts a rigid material. We view this problem as an approximation to a situation involving
a grain boundary between a grain with slip systems aligned for easy flow and a grain whose slip
system alignment severely inhibits flow. The solution exhibits large slip gradients within a thin
layer at the grain boundary.

Keywords: A. Dislocations; B. Grain boundaries; C. Crystal plasticity; D. Non-local plasticity

1 Introduction

This paper has two goals. The first is a generalization of classical single-crystal, small-deformation
viscoplasticity1 that accounts for geometrically necessary dislocations, here referred to as GNDs. This
generalization — formulated in terms of a microscopic balance involving forces work-conjugate to slip
in conjunction with the kinematics of GNDs (Burgers, 1939; Kröner, 1960) — is based on and follows
closely its finite deformational counterpart developed by Gurtin (2002).

1Cf. Mandel (1965), Rice (1971), Hill and Rice (1972), Teodosiu and Sidoroff (1976), Asaro and Rice (1977), Asaro
(1983ab), Asaro and Needleman (1985), and Bronkhorst, Kalinindi, and Anand (1992). See also Taylor and Elam (1923,
1925) and Taylor (1938ab). The extreme sensitivity of single-crystal plasticity to the presence of GNDs is underlined in
the discrete-dislocation analysis of Cleverlinga, Van der Giessen, and Needleman (1999).
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Our second goal, which builds on the single-crystal theory discussed above, is a theory of bicrystals.
Here our use of microforces equipped with their peculiar balance allows for a direct characterization of
grain boundaries based on physical quantities associated directly with the individual slip systems.

1.1 Classical single-crystal viscoplasticity

Let u(x, t) denote the displacement of an arbitrary point x in B, the region of space occupied by the
body. The classical theory of plasticity is based on the decomposition2

∇u = He + Hp, (1.1)

in which He represents stretching and rotation of the lattice, while Hp represents the evolution of
dislocations through the lattice. The symmetric and skew parts of He, namely

Ee = 1
2 (He + He�) and We = 1

2 (He − He�), (1.2)

represent the lattice strain and the lattice rotation. Single-crystal plasticity is based on the additional
hypothesis that plastic flow take place through slip on prescribed slip systems α = 1, 2, . . . , A, with
each system α defined by a slip direction sα and a slip-plane normal mα, where

sα · mα = 0, |sα|, |mα| = 1, sα,mα = constant. (1.3)

This hypothesis manifests itself in the requirement that Hp be characterized by slips (microshears)
γα(x, t) on the individual slip systems via the kinematic constitutive assumption

Hp =
A∑

α=1

γα sα⊗ mα. (1.4)

Here and in what follows, lower case Greek superscripts α, β, . . . denote slip-system labels and as such
have the range 1, 2, . . . , A. In the absence of work hardening the classical theory is typically based on
viscoplastic yield conditions

τα = σα|γ̇α|δ sgn γ̇α. (1.5)

Here τα, the resolved shear, is the macroscopic stress resolved on the α-th slip system; the field σα > 0,
the slip resistance on α, is an internal state-variable consistent with a system of hardening equations

σ̇α =
A∑

β=1

kαβ(σ1, σ2, . . . , σA) |γ̇β |, σα(x, 0) = σα
0 > 0, (1.6)

where the moduli kαβ ≥ 0 characterize strain-hardening due to slip; and δ > 0 is a constant that char-
acterizes the rate-dependence of the material.3 These equations supplemented by the local momentum
balance and a standard elastic stress-strain relation form the basic equations of the theory.

1.2 Generalization of the classical theory: a gradient theory that accounts
for GNDs

The plastic distortion Hp is not the gradient of a vector field, and GNDs may be characterized by the
closure failure of circuits as mapped by Hp, and hence by the geometric dislocation tensor

G = curlHp. (1.7)
2We use lightface for scalars (a, b, A, . . . ); lower-case boldface for vectors (a, b, . . . ); upper-case boldface for tensors

(E, T, . . . ). We write trT and T� for the trace and transpose of a (second-order) tensor T and use a “dot” to denote
the inner product of tensors: T · E = TijEij (using cartesian components and summation convention). Given any
vector u, (u×) is the skew tensor defined by (u×)ij = εirjur. For C a fourth-order tensor and E a second-order
tensor, (C[E])ij = CijklEkl. For u a vector field and T a tensor field, (∇u)ij = ∂ui/∂xj , (divT)i = ∂Tij/∂xj , and
(curlT)ij = εipq∂Tjq/∂xp.

3Most metals at room temperature are almost rate-independent and as such would be described by small values of δ.



Crystal plasticity with GNDs 3

Here we generalize the classical theory by allowing for constitutive dependences on G. We accomplish
this by developing the theory within a framework that allows for microforces whose working accompanies
slip as described by the fields γα. This microforce system consists of vector stresses ξα and scalar internal
forces πα whose working, within any subbody R, is given by

A∑

α=1

∫

R

(παγ̇α + ξα · ∇γ̇α) dV.

Because of the nonstandard nature of the microforces, we base our treatment on the principle of virtual
power. A consequence of this principle is that the classical Newtonian balances need be supplemented
by a microforce balance

div ξα + τα − πα = 0

for each slip-system α (Gurtin, 2000). The presence of the resolved shear τα couples the macroscopic
and microscopic systems.

We restrict attention to a purely mechanical theory with underlying “second law” the requirement
that the free energy increase at a rate not greater than the rate at which work is performed. Letting ψ
denote the free energy per unit volume and T the stress, this leads to a local free-energy inequality

ψ̇ − T · Ėe −
A∑

α=1

(ξα · ∇γ̇α + παγ̇α) ≤ 0 (1.8)

that is basic to our development of constitutive equations.
The classical theory fits trivially within this framework. To see this, assume that the free energy is

“elastic”, so that ψ̇ = T · Ėe, take ξα ≡ 0, and define πα = σα |γ̇α|δ sgn γ̇α. The microforce balances
τα = πα are then satisfied trivially, as is the free-energy inequality. For the classical theory the
additional structure represented by the microforce balances and second law is of little benefit. But the
inclusion of GNDs leads to a gradient theory, and here the microforce balances and second law yield a
physical framework that accounts in a natural manner for the distribution of GNDs within the body.

To develop a crystalline theory that accounts for GNDs, we take a physical approach that underlines
the reasons for specific constitutive assumptions:

(i) We model distortions of the crystal lattice due to GNDs by augmenting the classical quadratic
strain energy with a defect energy Ψ(G).4

(ii) Using the free-energy inequality as a guide, we develop appropriate constitutive equations for the
microforce fields. The microforce balances and these constitutive equations together form the
viscoplastic yield conditions.

In appealing to the free-energy inequality we do not seek the most general possible theory, but
one with dissipative part close to its classical counterpart. In this spirit, we are led to constitutive
equations for πα and ξα, which, when substituted into the microforce balance, result in the viscoplastic
yield conditions

τα = σαf(γ̇α) − div
(
mα× Tsα

)
, T = ∂Ψ/∂G. (1.9)

Here σαf(γ̇α), with σα consistent with the hardening equations (1.6) and f , possibly of the classical
form

f(γ̇α) = |γ̇α|δ sgn γ̇α, (1.10)

is dissipative, while
div

(
mα× Tsα

)
(1.11)

is strictly energetic. The term (1.11) is characteristic of kinematic hardening; its negative represents a
backstress on the α-th slip system. (Cf. the discrete-dislocation computations of Cleverlinga, Van der
Giessen, and Needleman (1999), which display large backstresses.)

4A free energy of this form was introduced by Teodosiu (1970) within a classical framework involving only standard
forces.
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The chief conceptual difference between the classical theory and that presented here is that the
yield conditions (1.9) represent constitutively augmented microscopic force balances. This difference
renders the yield conditions nonlocal (in fact, dependent on first and second slip-gradients) and suggests
the need for supplementary boundary conditions; we here discuss idealized boundary conditions that
represent microscopic counterparts of clamped and free boundaries. Because the underlying mechanics
is based on the principle of virtual power, the yield conditions and microtraction boundary conditions
have a variational formulation (cf. Gurtin, 2002) that should provide a useful basis for computations.
The theory presented here, which is the small-deformation counterpart of the finite-deformation theory
of Gurtin (2002), differs radically from other gradient theories of plasticity,5 chiefly because of the
central role played by the microforces and their abstract introduction as forces work-conjugate to slip.
For that reason, we sketch an argument of Gurtin (2002) showing that the microstresses ξα represent
counterparts within the present theory of the classical Peach-Koehler force on a single dislocation.

1.3 Bicrystals: theory without interfacial energy

Grain boundaries influence the plastic behavior of polycrystalline solids in many ways: (i) they modify
the yield stress of the material, acting as barriers for glide dislocations in the initial stages of plastic
deformation (cf. e.g. Hirth (1972), Miracle (1991), Mandal and Baker (1995), François, Pineau and
Zaoui (1998), Polcarova et al. (1998)); (ii) they may, conversely, act as sources of bulk dislocations, and
thus transmit plastic slip between adjacent grains (Shen et al. (1988), Clark et al. (1991), Pestman and
de Hosson (1992)); (iii) they may also promote superplastic behavior by a macroscopic slip mechanism:
the grains may slip one relative to the other along the grain boundaries, and this may greatly enhance
plastic deformation (see for instance Margolin (1998), Fu et al. (2001)); (iv) grain boundaries may also
act as channels for mass and impurity diffusion, or as nucleation or segregation sites for impurities or
new-phase particles (François, Pineau and Zaoui (1998)).

We focus here on the influence of grain boundaries on the evolution of GNDs in the interior of the
grains, explicitly accounting for the barrier-effect on plastic slip.

The basic grain boundary relations that we obtain play the role of interfacial yield conditions.
Specifically: (i) the relative slip of the grains along the boundary is activated when the shear stress at
the interface reaches a suitable threshold; (ii) analogously, plastic slip within each grain at the grain
boundary S is allowed on any given slip system α only when the component of the microstess ξα normal
to S reaches an assigned threshold, thereby rendering the grain boundaries barriers to plastic slip in
the initial stages of plastic deformation.6

Precisely, we consider a body composed of two grains, labelled by the integers 1, 2. Let S denote
the smooth surface that represents the grain boundary, and denote by nS the unit normal to S directed
outward from grain 1. We assume that the grains are rotated one relative to the other, and write

sα
2 = Rsα

1 , mα
2 = Rmα

1 , (1.12)

where R is an assigned rotation, and (sα
1 ,mα

1 ) and (sα
2 ,mα

2 ) are the slip systems in grains 1 and 2,
respectively. We allow the grains to slip, one relative to the other, along S, so that the displacement u
may be discontinuous across S. We write [[u]] for the jump 7 of u across S and

d = [[u̇]],

5Cf. Fleck and Hutchinson (1993) and Fleck, Muller, Ashby, and Hutchinson (1994), who develop small-strain theories
that account for strain gradients within a Toupin-Mindlin framework; this work is reformulated by Fleck and Hutchinson
(2001) using microforces. Cf. also Naghdi and Srinivasa (1993, 1994), who develop a finite Cosserat theory with GNDs
characterized by CurlFp (cf. Shizawa and Zbib, 1999). Earlier attempts are those of Aifantis (1984, 1987), Wright and
Batra (1987), Batra (1987), Batra and Kim (1988), Muhlhaus and Aifantis (1991ab), Zbib and Aifantis (1992). A survey
of gradient plasticity theories is contained in the review of Fleck and Hutchinson (1997). The theories mentioned above
all involve higher-order boundary conditions. A discussion of gradient theories not equipped with higher-order boundary
conditions is beyond the present scope.

6These boundary conditions should be compared to those of Shu and Fleck (1999), who discuss bicrystals within the
Fleck-Hutchinson (1997) theory. For grain-boundary conditions these authors augment more or less standard conditions
with the requirement that the normal gradient of the displacement be continuous.

7We write ϕ1 for the limit of a bulk field ϕ at S from grain 1, ϕ2 for the limit from grain 2, and [[ϕ]] = ϕ2 − ϕ1.
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for the grain-boundary slip-rate.
The first set of conditions at S consists of the classical traction balance

[[T]]nS = 0

across S in conjunction with a balance between the tangential tractions and the grain-boundary shear-
stress τ :

(T1nS)tan = (T2nS)tan = τ .

Here (TinS)tan denotes the tangential projection of TinS on S. We consider a simple constitutive
equation for τ of the form8

τ = ϕ |d|δ d
|d| . (1.13)

Here ϕ is a positive modulus. As suggested by experiment (Biscondi 1982), ϕ should depend on the
orientation nS of the boundary and the misorientation R of the grains. Choosing δ = 0, the macroscopic
slip condition (1.13) is rate independent and represents a Coulomb-friction law for the relative slip of
the grains at the interface.

The second set of conditions at S have the form of viscoplastic boundary conditions for the micro-
forces ξα; viz.

ξα
1 · nS = −ζα

1 |γ̇α
1 |δ sgn γ̇α

1 , ξα
2 · nS = ζα

2 |γ̇α
2 |δ sgn γ̇α

2 , (1.14)

with the ζα
i positive moduli that measure the resistence of the grain boundary to plastic slip. These

moduli depend on the slip system under consideration, the orientation of the boundary with respect to
the grains, the relative misorientation of the grains, and the net accumulated slip from both grains at
the grain boundary (cf. (10.15) and (10.16)).

Since the microstress ξα is a function of the geometric dislocation tensor through the relation
ξα = mα× (∂Ψ/∂G)sα, the viscoplastic yield conditions (1.14) (with ζα

i constant for the purpose of
this discussion) may be interpreted as follows for a body under monotone increasing loading:

(a) In the initial stages of deformation, where the density of GNDs is small, the microtraction ξα
1 · nS

on, say, the grain 1 side of S, should also be small and, by (1.14) and the assumption that the exponent
δ is small, the slip-rate γ̇α

1 ≈ 0. Thus in this regime, the grain boundary acts as a barrier for plastic
slip. This constraint should induce increasing slip gradients on α near S and this in turn should result
in an increase in the density of GNDs at S in grain 1. This should be a “boundary layer effect”, not
apparent away from S, where one would expect the accumulation of GND to be of lesser magnitude.
Thus we would expect the dislocation content to exhibit a sharp peak at S during the initial stages of
flow.

(b) As the density of GNDs increases at the grain boundary, the microtraction ξα
1 · nS also increases,

and this, by (1.14), eventually decrease the magnitude of the constraint on γ̇α
1 , which may attain large

values with only minor changes in the microtraction ξα
1 · nS . With increasing loading this relatively

constant behavior of ξα
1 · nS would, since ξα = ξα(G), tend to (at least in part) hold the content of

GNDs at S in grain 1 constant, especially if many slip systems are active there.

The behavior specified in (a) and (b), which is a consequence of the microtraction conditions at the
grain boundary, seems consistent with the experiments of Sun et al. (1998, 2000), who determine the
geometric dislocation tensor in a bicrystal through measurements of lattice rotations.

We discuss the specialization of the theory to strict plane-strain, as the results there are more
transparent. In particular, restricting attention to the rate-independent limit of the theory, we establish
a more precise version of the remarks (a) and (b).

Finally, we obtain an exact solution of a simple problem in plane strain involving a semi-infinite
compressed specimen that abuts a rigid material. The solution may be viewed as an approximation to
a situation involving a grain boundary between a grain with slip systems aligned for easy flow and a
grain whose slip system alignment severely inhibits flow.

8Since slip across a grain boundary is generally a high temperature phenomenon, the condition (1.13) may be replaced
by continuity of the displacement across S under normal operating conditions (John Hutchinson, private communication).

For convenience, we use the same power δ in all power laws.
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2 The geometric dislocation tensor G

2.1 G in terms of slip gradients

We base the theory on standard crystalline kinematics as specified in §1.1 with GNDs characterized by
the geometric dislocation tensor as defined in (1.7). Since curl∇u = 0, we may use (1.1) to express G
in terms of either He or Hp:

G = curlHp = −curlHe. (2.1)

Further, since
(
curl (γα sα⊗ mα)

)
ij

= δirq
∂γα

∂xr
sα

j mα
q =

(
(∇γα× mα) ⊗ sα

)
ij

,

(1.4) yields

G =
A∑

α=1

(∇γα× mα) ⊗ sα. (2.2)

Let ∂S denote the boundary curve of an oriented plane surface S with unit normal e. By Stokes’
theorem, the Burgers vector corresponding to the curve ∂S is given by

∫

∂S

Hpdx =
∫

S

(curlHp)�e dA =
∫

S

G�e dA. (2.3)

The vector field G�e therefore represents the Burgers vector (per unit area) for small loops on the plane
Π with unit normal e; i.e., the local Burgers vector for those dislocation lines piercing Π.

2.2 Digression: G in terms of dislocation densities

Tensors such as G meant to characterize specific distributions of dislocations are often expressed as
linear combinations of dislocations ρ� ⊗ s. Here ρ is a (signed) density, � ⊗ s is a dislocation dyad, and
� and s are unit vectors with s the Burgers direction and � the line direction (Nye, 1953). Moreover,
an edge dislocation has � ⊥ s, a screw dislocation has � = s, and a mixed dislocation has � and s neither
parallel nor orthogonal.

A class of expansions in terms of dislocations consistent with the crystalline structure of the material
was utilized by Kubin et al. (1992), Sun et al. (1998, 2000), and Arsenlis and Parks (1999), who note
that canonical dislocations for slip on the α-th system are: screw dislocations with Burgers direction
sα; and edge dislocations with Burgers direction sα and line direction

�α = mα× sα.

The canonical dislocation dyads for slip on α are therefore sα⊗ sα and �α⊗ sα, and Arsenlis and Parks
(1999) have shown that the expression (2.2) may be rewritten as a decomposition of G in terms of such
dyads; using “�” and “�” as screw and edge symbols, this expansion has the form

G =
A∑

α=1

( ρα
� sα⊗ sα

︸ ︷︷ ︸
pure screw
dislocation

+ ρα
� �α⊗ sα

︸ ︷︷ ︸
pure edge
dislocation

), ρα
� = −sα · ∇γα, ρα

� = �α · ∇γα. (2.4)

Note that in each case the directional derivative that defines the density is in a direction perpendicular
to the line direction.

To verify (2.4), fix α, expand ∇γα with respect to {sα, �α,mα}, and then compute ∇γα× mα; the
result is

(sα · ∇γα)(sα× mα) + (�α · ∇γα)(�α× mα) = −(sα · ∇γα)�α + (�α · ∇γα)sα.

Thus
(∇γα× mα) ⊗ sα = −(sα · ∇γα) �α⊗ sα + (�α · ∇γα) sα⊗ sα

and (2.2) reduces to (2.4).
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3 Principle of virtual power. Macroscopic and microscopic
force balances

We write
γ = (γ1, γ2, . . . , γA)

for the list of slips. The theory presented here is based on the belief that the power expended by each
independent “rate-like” kinematical descriptor be expressible in terms of an associated force system
consistent with its own balance. But the basic “rate-like” descriptors, namely u̇, Ėe, and γ̇ are are not
independent, as they are constrained by

∇u̇ = Ėe + Ẇe +
A∑

α=1

γ̇α (sα⊗ mα) (3.1)

(cf. (1.1), (1.2), (1.4)), and it is not apparent what forms the associated force balances should take.
For that reason, we determine these balances using the principal of virtual power.

3.1 Principle of virtual power

With each evolution of the body we associate macroscopic and microscopic force systems. The macro-
scopic system is defined by a traction t(n) (for each unit vector n), a field with a more or less standard
interpretation, and an external body force f presumed to account for inertia. The microscopic system,
which is nonstandard, is defined by: (i) a lattice stress T that expends power over the lattice strain-rate
Ėe; (ii) an internal microforce πα for each slip system α that expends power over the slip-rate γ̇α; (iii)
a microstress ξα that expends power over the slip-rate gradient ∇γ̇α; and (iv) a microtraction Ξα(n)
that expends power over γ̇α. Since Ėe is symmetric, we require that the lattice stress T be symmetric.

We characterize the force systems through the manner in which they expend power; that is, given
any subbody R, through the specification of: (i) Pext(R), the power expended on R by material external
to R; and (ii) Pint(R), a concomitant expenditure of power within R. Precisely,

Pext(R) =
∫

∂R

t(n) · u̇ dA +
∫

R

f · u̇ dV +
A∑

α=1

∫

∂R

Ξα(n) γ̇α dA,

Pint(R) =
∫

R

T · Ėe dV +
A∑

α=1

∫

R

(παγ̇α + ξα · ∇γ̇α) dV.






(3.2)

Fix the time and consider the fields u̇, Ėe, and γ̇ as virtual velocities to be specified independently
in a manner consistent with (3.1); that is, denoting the virtual fields by ũ, Ẽe, and γ̃ to distinguish
them from fields associated with the actual evolution of the body, we require that

∇ũ = Ẽe + W̃e +
A∑

α=1

γ̃α (sα⊗ mα) (3.3)

for some skew tensor field W̃e. Further, we define a generalized virtual velocity to be a list

V = (ũ, Ẽe, γ̃)

of such fields and write Pext(R,V) and Pint(R,V) for Pext(R) and Pint(R) when the actual fields u̇, Ėe,
and γ̇ are replaced by their virtual counterparts ũ, Ẽe, and γ̃.

We postulate a principle of virtual power requiring that, given any generalized virtual velocity V
and any subbody R, the corresponding internal and external virtual powers are balanced:

Pext(R,V) = Pint(R,V). (3.4)
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3.2 Macroscopic and microscopic force balance

We now deduce the consequences of this principle. In applying the power balance (3.4) we are at liberty
to choose any V consistent with the constraint (3.3).

Macroscopic force balances

Consider first a generalized virtual velocity without slip, so that γ̃ ≡ 0, choose the virtual field ũ
arbitrarily, and let Ẽe and W̃e denote the symmetric and skew parts of ∇ũ, so that

∇ũ = Ẽe + W̃e

and the constraint (3.3) is satisfied. Then, since T is symmetric, T · Ẽe = T ·∇ũ and the power balance
(3.4) takes the form ∫

∂R

t(n) · ũ dA =
∫

R

(T · ∇ũ − f · ũ) dV.

Equivalently, ∫

∂R

(t(n) − Tn) · ũ dA = −
∫

R

ũ · (divT + f) dV,

and since this relation must hold for all R and all ũ, a standard argument leads to the traction condition
t(n) = Tn and the classical local force balance

divT + f = 0. (3.5)

Microscopic force balances

To discuss the microscopic counterparts of these results, we define the resolved shear τα through

τα = sα ·Tmα. (3.6)

Consider a generalized virtual velocity with ũ ≡ 0, choose the virtual field γ̃ arbitrarily, and let Ẽe and
W̃e denote the symmetric and skew parts of the tensor field −

∑
α γ̃α (sα⊗ mα), so that

A∑

α=1

γ̃α (sα⊗ mα) = −(Ẽe + W̃e).

Then, since T is symmetric, T · Ẽe = −
∑

α ταγ̃α and the power balance (3.4) yields the microscopic
virtual-power relation

A∑

α=1

∫

∂R

Ξα(n)γ̃α dA =
A∑

α=1

∫

R

[
(πα − τα)γ̃α + ξα · ∇γ̃α

]
dV (3.7)

to be satisfied for all for all γ̃ and all R. Equivalently,

A∑

α=1

∫

∂R

(
Ξα(n) − ξα ·n

)
γ̃α dA = −

A∑

α=1

∫

R

(
div ξα + τα − πα

)
γ̃α dV,

and arguing as before this yields the microtraction conditions

Ξα(n) = ξα ·n (3.8)

and the microforce balances
div ξα + τα − πα = 0 (3.9)

on each slip system α.
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4 Energy imbalance

We consider a purely mechanical theory based on a second law in which the temporal increase in free
energy of any subbody R is less than or equal to the power expended on R. Precisely, letting ψ denote
the free energy per unit volume, we take the second law in the form of an energy imbalance asserting
that

˙∫

R

ψ dV ≤ Pext(R) (4.1)

for all subbodies R. In view of (3.2) and the identity Pext(R)=Pint(R), (4.1) has the alternative forms

˙∫

R

ψ dV ≤
∫

∂R

Tn · u̇ dA +
∫

R

f · u̇ dV +
A∑

α=1

∫

∂R

(ξα · n)γ̇α dA,

˙∫

R

ψ dV ≤
∫

R

T · Ėe dV +
A∑

α=1

∫

R

(παγ̇α + ξα · ∇γ̇α) dV.






(4.2)

Since R is arbitrary, (4.2)2 yields the free-energy inequality

ψ̇ − T · Ėe −
A∑

α=1

(ξα · ∇γ̇α + παγ̇α) ≤ 0. (4.3)

We use this inequality as a guide in developing a suitable constitutive theory.

5 Constitutive theory. Thermodynamic restrictions

Our goal is a theory that allows for constitutive dependences on G, but that does not otherwise depart
drastically from the classical theory. Toward this end, we begin with a constitutive equation for the
free energy in which the classical elastic strain-energy is augmented by a defect energy Ψ(G):

ψ = 1
2E

e · C[Ee] + Ψ(G). (5.1)

Central to the theory is the thermodynamic defect stess defined by

T =
∂Ψ(G)

∂G
. (5.2)

Let G = G(t). Then, by (2.2),

˙Ψ(G) = T · Ġ =
A∑

α=1

(∇γ̇α× mα) · Tsα =
A∑

α=1

(
mα× Tsα

)
· ∇γ̇α, (5.3)

showing that the normal slip-gradients mα · ∇γα do not affect temporal changes in the defect energy.
Next, by (5.1) and (5.3),

ψ̇ = C[Ee] · Ėe +
A∑

α=1

(
mα× Tsα

)
· ∇γ̇α, (5.4)

and the free-energy inequality (4.3) takes the form

(
T − C[Ee]

)
· Ėe +

A∑

α=1

[
παγ̇α +

(
ξα − mα× Tsα

)
· ∇γ̇α

]
≥ 0. (5.5)

The left side of this inequality represents the dissipation, per unit volume. Consider constitutive equa-
tions giving T, πα, and ξα as functions of Ee, G, and the list γ̇ = (γ̇1, γ̇2, . . . , γ̇A) of slip-rates. We
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require that the inequality (5.5) hold for all choices of Ėe, γ̇, and ∇γ̇; the linearity of this inequality in
Ėe and ∇γ̇ then reduces the constitutive equation for T to the classical form

T = C[Ee] (5.6)

and — what is more important — requires that

ξα = mα× Tsα. (5.7)

Thus (5.5) reduces to
∑

α παγ̇α ≥ 0. Guided by this inequality and the classical relation (1.5), we posit
a constitutive relation for πα in the form

πα = σαf(γ̇α), (5.8)

where, for each fixed α,
f(γ̇α) = −f(−γ̇α), f(γ̇α)γ̇α ≥ 0, (5.9)

and where the slip resistances σα are consistent with the hardening equations

σ̇α =
A∑

β=1

kαβ(σ1, σ2, . . . , σA) |γ̇β |, σα(x, 0) = σα
0 > 0 (5.10)

(with hardening moduli kαβ possibly dependent also on G). The constitutive relations (5.1), (5.7), and
(5.8) then satisfy the free-energy inequality. Note that the microstress ξα is parallel to the α-th slip
plane, and that πα is dissipative, while ξα is energetic.

Note that the constitutive theory is completely specified by the elasticity tensor C, the defect
energy Ψ, the viscosity function f , and the hardening moduli kαβ ; and that the dissipation is given by∑

α σαf(γ̇α) γ̇α.

6 Viscoplastic yield conditions

The microforce balance div ξα + τα − πα = 0 augmented by the constitutive equations for πα and ξα

plays the role of a viscoplastic yield condition

τα − (−1)div (mα× Tsα)︸ ︷︷ ︸
backstress due to energy

stored in dislocations

= σαf(γ̇α)︸ ︷︷ ︸
dissipative hard-
ening due to slip

(6.1)

for each slip system α. Since T = T(G), the backstress depends on G and ∇G, and hence on the first
and second gradients ∇γβ and ∇∇γβ , β = 1, 2, . . . , A, thereby rendering the yield condition strongly
nonlocal.

The yield condition (6.1) embodies two different hardening mechanisms: that provided by the hard-
ening equations (5.10) and that which results, via the backstress, from an energetic dependence on G.
Hardening imposed by by the hardening equation is strictly dissipative. This hardening has a purely
phenomenological nature; the only restriction placed by the basic theoretical framework is that the
slip resistances σα be nonnegative. Moreover, the resulting hardening provides no contribution to a
backstress. On the other hand, the hardening resulting from the backstress is strictly energetic. This
hardening is a consequence of the microforce balance and the restrictions imposed by the thermody-
namical framework.9 It is important to bear in mind that the hardening equations allow for latent

9Cf. the discrete-dislocation computations of Cleveringa, Van der Giessen, and Needleman (1999), which display large
backstresses. These computations are based on plane strain with simple-shear boundary-loading, with the specimen a
composite consisting of elastic particles within a single-crystal matrix whose only active slip system is parallel to the
direction of shear. Computational results of Bittencourt, Needleman, Gurtin, and Van der Giessen (2002) comparing the
nonlocal theory presented here to the discrete dislocation theory at micron length scales show qualitative agreement with
respect to the backstress. A second set of comparisons, again based on plane strain and simple-shear loading, performed
on a pure specimen with two active symmetrically placed slip systems, demonstrate that both hardening mechanisms play
essential roles in the emergence of a boundary layer and in the effect of specimen size.
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hardening via the moduli kαβ , α �= β. In contrast, hardening arising from the backstress would not
directly induce latent hardening; indeed, simple shear is compatible and hence has G ≡ 0, but would
generally involve multiple slip and hence latent hardening via (5.10).

Rate-independent yield conditions may be obtained from (6.1) with f of the classical form (1.10)
by formally passing to the limit as δ → 0+. The result, for each slip system, is as follows (cf. Gurtin,
2000): when the left side of (6.1) lies within the elastic range the slip on α vanishes,

−σα < τα + div (mα× Tsα) < σα, γ̇α = 0; (6.2)

on the other hand, slip of the right sign is possible when the left side of (6.1) reaches either of the two
yield limits,

τα + div (mα× Tsα) = +σα, γ̇α ≥ 0,

τα + div (mα× Tsα) = −σα, γ̇α ≤ 0.

}
(6.3)

For the special case of a quadratic, isotropic defect energy

Ψ(G) = 1
2

(
c1|G|2 + c2|trG|2 + c3| 12 (G − G�)|2

)
, (6.4)

with c1, c2, and c3 constant, the defect stress has the form

T = c1G + c2(trG)1 + c3(G − G�) = (c1 + c3)G + c2(trG)1 − c3G�,

or equivalently, by (2.2),

T =
A∑

β=1

(
(c1 + c3)(∇γβ× mβ) ⊗ sβ + c2(∇γβ · �β)1 − c3 sβ⊗ (∇γβ× mβ)

)
.

Thus, since ξα = mα× Tsα,

ξα =
A∑

β=1

(
(c1 + c3)(sα · sβ)mα× (∇γβ× mβ) + c2(∇γβ · �β)�α − c3(mα× sβ)∇γβ · (mβ× sα)

)
,

and, since mα× (∇γβ× mβ) =
[
(mα · mβ)1 − mβ⊗ mα

]
∇γβ , if we define (constant) tensors

Mαβ = (c1 + c3)(sα · sβ)
[
(mα · mβ)1 − mβ⊗ mα

]
+ c2(�α⊗ �β) − c3(mα× sβ) ⊗ (mβ× sα), (6.5)

then the microstress becomes

ξα =
A∑

β=1

Mαβ ∇γβ , (6.6)

and the yield condition has the explicit form

τα +
A∑

β=1

Mαβ · ∇∇γβ = σαf(γ̇α). (6.7)

While the tensors Mαβ have a complicated form, they are constant and, given the constants c1, c2, and
c3, may be computed for any prescribed single crystal. Finally, the basic equations of the theory consist

of:

(i) the kinematical equations (1.1)-(1.4) and (2.2);

(ii) the macroscopic balance (3.5) supplemented by the stress-strain relation (5.6);

(iii) the yield conditions (6.1) (general theory) or (6.7) (quadratic, isotropic defect energy) supple-
mented by the hardening equations (5.10).
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7 The microstress ξα as a continuous distribution of Peach-
Koehler forces

The present theory is viscoplastic with dislocations distributed continuously throughout the body via
a tensor field G. Even so, because there is a natural decomposition of G into continuous distributions
of screw and edge dislocations, one might expect there to be a counterpart of the Peach-Koehler force
within the present theory. For a distribution of pure dislocations evolving on the α-th slip plane, such
a distributed Peach-Koehler force should be parallel to the α-th slip plane and perpendicular to the
line direction; such a force should therefore have the form ϕα

� (mα× �α) for edge dislocations on α and
ϕα

� (mα× sα) for screw dislocations on α, where the ϕ’s are scalar fields that represent associated force
densities. Further, in the spirit of the classical Peach-Koehler force, these force densities should be
energetic in nature. We now give an argument of Gurtin (2002, §8.1) showing that if we account for
specific dislocations through the decomposition (2.4), then the microstress is a sum of such continuously
distributed Peach-Koehler forces. To begin with, note that

˙Ψ(G) = T ·
A∑

α=1

(ρ̇α
� sα⊗ sα + ρ̇α

� �α⊗ sα) =
A∑

α=1

(
tα
� ρ̇α

� + tα
� ρ̇α

�

)
,

with
tα
� = sα · Tsα, tα

� = �α · Tsα. (7.1)

The fields tα
� and tα

� therefore represent work-conjugate scalar microforces for densities of screw and
edge dislocations on the slip system α. These fields therefore represent viable candidates for the force
densities associated with such screw and edge dislocations.

Next, fix α and expand T with respect to the basis {sα, �α,mα}. Then

T = tα
� sα⊗ sα + tα

� �α⊗ sα + K,

with K a sum of tensor products of the form mα⊗(. . . ), (. . . )⊗mα, and (. . . )⊗�α, so that mα×Ksα = 0.
Thus, since �α = mα× sα, we may use (5.7) to conclude that

ξα = tα
�(mα× sα) + tα

� (mα× �α). (7.2)

Thus the microstress is governed solely by the resolved values tα
� and tα

� of the defect stress on the
canonical dislocation dyads for α. What is more important, the microscopic forces that comprise (7.2)
are of the requisite form and hence have the physical interpretations:

tα
�(mα× sα)

︸ ︷︷ ︸
distributed Peach-Koehler
force on screw dislocations

and tα
� (mα× �α).︸ ︷︷ ︸

distributed Peach-Koehler
force on edge dislocations

Based on this argument, we view ξα as a net distributed Peach-Koehler force for the slip-system α.
Finally, note for future use that (7.2) may be written more simply as

ξα = tα
��α − tα

�sα.

8 Microscopically simple boundary conditions

The presence of microstresses results in an expenditure of power
∫

∂B
(ξα · n)γ̇αdA by the material in

contact with the body, and this necessitates a consideration of boundary conditions on ∂B involving
the microtractions ξα · n and the slip-rates γ̇α, where n denotes the outward unit normal to ∂B. We
discuss now a simple class of boundary conditions for these fields on a prescribed subsurface S of ∂B.
These boundary conditions result in a null expenditure of micropower in the sense that (ξα · n)γ̇α = 0
on S for all α.



Crystal plasticity with GNDs 13

The boundary is microfree on S if

ξα · n = 0 on S, α = 1, 2, . . . , A. (8.1)

This boundary condition would seem consistent with the macroscopic boundary condition Tn = 0 on
S. By (5.7), ξα is parallel to the α-th slip plane, Thus, if the boundary is microfree, then, for each α,
ξα (and hence the net Peach Koehler force on GNDs on α) must be tangent to the line of intersection
of the α-th slip plane with S. (Other consequences of the microfree conditions are given by Gurtin
(2002).)

One might consider the microclamped conditions

γα = 0 on S, α = 1, 2, . . . , A (8.2)

in conjunction with a boundary surface S that is macroscopically clamped in the sense that u = 0 on
S. Consider a microclamped surface. Then, by (8.2), the tangential derivative of γα must vanish on S

for each α, so that ∇γα = ∂γα

∂n n (†) and, by (2.2),

G =
A∑

α=1

∂γα

∂n
(n × mα) ⊗ sα on S.

G on S may therefore be considered as the sum over α of mixed dislocations with Burgers direction
parallel to sα and line direction tangent to the intersection of S with the α-th slip plane, and with
density |n × mα|∂γα

∂n . Moreover, G�n = 0 on S; hence the net Burgers vector associated with small
loops on S vanishes. Note also that, by (†),

ρα
� = −(sα · n)

∂γα

∂n
and ρα

� = (�α · n)
∂γα

∂n
on S; (8.3)

thus ρα
�

ρα
�

= − �α·n
sα·n , which is the assertion that the screw and edge densities for α be in inverse ratio to

the projections of their line directions on n. Therefore, ρα
� = 0 or sα · n = 0 if and only if ρα

� = 0 or
�α · n = 0.

9 Two-dimensional theory

9.1 Strict plane-strain

Under plane strain the displacement has the component form

ui(x1, x2, t) (i = 1, 2), u3 = 0,

and results in a displacement gradient ∇u that is independent of x3, so that

(∇u)j3 = (∇u)3j = 0 (j = 1, 2, 3); (9.1)

i.e.,
(∇u)e = (∇u)�e = 0, with e ≡ e3, (9.2)

the out-of-plane normal.
When discussing plane deformations we restrict attention to planar slip systems; that is, slip systems

α that satisfy
sα · e = 0, mα · e = 0, sα× mα = e, (9.3)

with slips γα independent of x3; all other slip systems are ignored. The assumption of planar slip
systems yields restrictions on the components of Hp and (hence) He, Ee, and We strictly analogous
to those of ∇u as specified in (9.1) and (9.2). There is a large literature based on this approximative



Crystal plasticity with GNDs 14

hypothesis. The resulting fully two-dimensional kinematics, which we refer to as strict plane-strain, is
important in constructing simple mathematical models, often based on two slip systems.10

In strict plane-strain the lattice rotation We has the form

We = ϑ (e×),

where ϑ(x1, x2, t), the lattice-rotation angle, measures local rotations of the lattice. Then He = Ee +
ϑ (e×) and, since curl(ϑ (e×)) = −e ⊗∇ϑ, we may use (2.1) to conclude that

G = e ⊗∇ϑ − curlEe. (9.4)

9.2 Burgers vector g

The following notation for first and second slip-directional derivatives of a scalar field Φ and a vector
field v is convenient:

Φ,β = sβ · ∇Φ, Φ,αβ = sα · (∇∇Φ)sβ , v,β = (∇v)sβ . (9.5)

Then, since e · ∇γα = 0, it follows that ∇γα× mα = (sα · ∇γα)(sα× mα) = γα,α e, so that, by (2.2),

G = e ⊗ g, g =
A∑

α=1

γα,α sα. (9.6)

Thus, since each slip direction sα is orthogonal to e,

g ⊥ e.

Further, because g = G�e, g represents the Burgers vector (per unit area) for small loops on the cross-
sectional plane (the plane with unit normal e). Moreover, (9.6) shows G to have the form of a single
edge dislocation with line direction e and Burgers vector g.

9.3 Constitutive theory. Yield conditions

In view of (9.6), we can write the free energy in the form

ψ = 1
2E

e · C[Ee] + Ψ(g), (9.7)

so that, by (9.6),

ψ̇ = C[Ee] · Ėe +
A∑

α=1

(sα · t) γ̇α,α

with

t =
∂Ψ(g)

∂g
.

The free-energy inequality (4.3) therefore takes the form

(
T − C[Ee]

)
· Ėe +

A∑

α=1

[
παγ̇α +

(
ξα − (sα · t) sα

)
·∇γ̇α

]
≥ 0,

and arguing as in §5, we are led to the relations

ξα = (sα · t) sα, (9.8)

πα = f(γ̇α), and T = C[Ee]. Thus, since div ξα = sα · ∇ (sα · t) = sα · t,α , the yield conditions take the
form

τα + sα · t,α = σαf(γ̇α).
10Cf., e.g., Asaro 1983, pp. 45-46, 84-97 and the references therein.
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For the quadratic, isotropic defect energy

Ψ(g) = 1
2c|g|2, (9.9)

with c constant,
t = cg

and
ξα = c(sα · g) sα. (9.10)

On the other hand, by (9.6),

g · sα =
A∑

β=1

Sαβγβ ,β ,

where Sαβ are the slip-interaction coefficients

Sαβ = sα · sβ .

Thus

ξα = c
[ A∑

β=1

Sαβγβ ,β

]
sα (9.11)

and the yield conditions become (cf. (9.5)2)

τα + c

A∑

β=1

Sαβγβ ,βα = σαf(γ̇α). (9.12)

By (9.4) and (9.6),
g = ∇ϑ − (curlEe)�e. (9.13)

Thus, when lattice-strain gradients are negligible,

g ≈ ∇ϑ.

Granted this approximation and its second-order counterpart, we have the following approximate forms
for the microstresses and yield conditions:

ξα ≈ c ϑ,α sα, τα + c ϑ,αα ≈ σαf(γ̇α).

In this approximation, ξα is linear in ϑ,α, which is the curvature of the deformed α-th slip line,11 and
the nonlocal term ϑ,αα in the yield condition, which characterizes the backstress, represents the change
of this curvature in the direction of slip on α.

10 Grain boundaries

In this section we develop kinematical and mechanical transmission conditions across a boundary be-
tween crystalline grains.

11At least to within the approximations inherent in the underlying hypothesis of small deformations.



Crystal plasticity with GNDs 16

10.1 Kinematics

We assume that the bulk material within each grain is consistent with the theory developed in the
preceding sections. We write R (defined uniquely up to a symmetry transformation of the crystal) for
the prescribed orthogonal tensor that defines the relative misorientation of grain 2 relative to grain 1,
before deformation. We assume that the slip systems of the individual grains are labelled in a manner
consistent with this misorientation, so that, labelling the grains i = 1, 2 and writing sα

i and mα
i for the

the slip directions and slip-plane normals for grain i,

sα
2 = Rsα

1 and mα
2 = Rmα

1 (10.1)

for each slip system α.
Let S denote the smooth surface that represents the grain boundary, and let nS denote the the unit

normal to S, directed outward from grain 1. We assume that the bulk fields are smooth away from S
and up to S from each grain; given any bulk field ϕ, we write ϕ1 for the limit of ϕ at S from grain 1,
ϕ2 for the limit of ϕ from grain 2, and [[ϕ]] = ϕ2 − ϕ1 for the jump of ϕ across S. Then, by (1.4) and
(10.1),

[[Hp]] =
A∑

α=1

[[γα sα⊗ mα]] =
A∑

α=1

γα
2 sα

2 ⊗ mα
2 −

A∑

α=1

γα
1 sα

1 ⊗ mα
1 . (10.2)

To exclude cavitation at the grain boundary we require that the normal component of the displace-
ment u be continuous across S:

[[u]] · nS = 0. (10.3)

The jump [[u]], which is tangential to S, represents the grain-boundary slip, a field that plays a major
role in our theory.

10.2 Force balances at the grain boundary

Let R be an arbitrary subregion of the body and assume that

SR = S ∩ R,

the portion SR of S in R, is a smooth subsurface. Let ϕ denote a bulk field, so that ϕ may suffer a
jump discontinuity across S. Then integrals such as

∫
R
∇ϕ dV ,

∫
R
ϕ̇ dV , and

∫
∂R

ϕ̇ dA are treated as
ordinary integrals with piecewise continuous integrands; e.g., the first integral is given as the integrals
of ∇ϕ over the portion of R in grain 1 plus the integral over the portion of R in grain 2.

We neglect surface stresses within S that act on SR along its boundary curve ∂SR. The external
power expenditure for R is thus, as before, given by (3.2)1, so that, since t(n) = Tn,

Pext(R) =
∫

∂R

Tn · u̇ dA +
∫

R

f · u̇ dV +
A∑

α=1

∫

∂R

(ξα · n) γ̇α dA. (10.4)

The internal power consists of the bulk portion (3.2)2 augmented by the contribution due to the
presence of the grain boundary. The basic kinematic quantities that act internally to SR are the slip-
velocity [[u̇]] and the limiting slip rates γ̇α

1 and γ̇α
2 ; to accomodate these we introduce a macroscopic

internal force τ conjugate to [[u̇]] and microscopic internal forces Πα
1 and Πα

2 conjugate to γ̇α
1 and γ̇α

2 .
We therefore write the internal power in the form

Pint(R) =
∫

R

T · Ėe dV +
A∑

α=1

∫

R

(παγ̇α + ξα · ∇γ̇α) dV +
∫

SR

τ · [[u̇]] dA +
A∑

α=1

∫

SR

(Πα
1 γ̇α

1 + Πα
2 γ̇α

2 ) dA. (10.5)

Consistent with the constraint nS · [[u̇]] = 0, we require that τ be tangential:

τ · nS = 0.
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We define virtual velocities as in §3.1, except we now add the grain-boundary constraint nS · [[ũ]] = 0.
Then, as before, the principle of virtual power requires that Pext(R,V) = Pint(R,V) for all R and all
virtual velocity fields V. We decouple the grain boundary from the bulk material by choosing an
arbitrary subsurface P of S and a subregion R such that SR = P , and then shrinking R smoothly down
to P . In this process the limiting values of the integrals over R vanish, since the volume of R vanishes,
while ∫

∂R

Tn · ũ dA →
∫

P

[[TnS · ũ]] dA,

∫

∂R

(ξα · n) γ̃α dA →
∫

P

[[(ξα · nS)γ̃α]] dA,

and we are led to a virtual power principle for a “pillbox” P of infinitesimal thickness:

∫

P

[[TnS · ũ]] dA +
A∑

α=1

∫

P

[[(ξα · nS)γ̃α]] dA =
∫

P

τ · [[ũ]] dA +
A∑

α=1

∫

P

(Πα
1 γ̃α

1 + Πα
2 γ̃α

2 )dA; (10.6)

since P is arbitrary,

[[TnS · ũ]] +
A∑

α=1

[[(ξα · nS)γ̃α]] = τ · [[ũ]] +
A∑

α=1

(Πα
1 γ̃α

1 + Πα
2 γ̃α

2 ), (10.7)

a relation that must hold for all fields γ̃α
1 , γ̃α

2 , ũ1, and ũ2 on S consistent with the constraint ũ1 ·nS =
ũ2 · nS . Assume first that the γ̃α’s vanish identically. The choice ũ1 = ũ2 then yields the classical
balance

[[T]]nS = 0, (10.8)

and we may use the abbreviation
TnS = T1nS = T2nS . (10.9)

On the other hand, the choice ũ1 = 0 yields (TnS − τ ) · ũ2 = 0 for all ũ2 tangent to S; since τ is
tangential, this implies that

(
TnS

)
tan

= τ . (Here atan denotes the tangential component of a vector a;
i.e., atan = a − (a · nS)nS .) Thus and by (10.8),

(
TnS

)
tan

= τ . (10.10)

Finally, if we choose ũ ≡ 0 in (10.7) and use the fact that for each α, γ̃α
1 and γ̃α

2 are each arbitrary,
we are led to microforce balances for the grain boundary: for each slip system α,

ξα
1 · nS = −Πα

1 , ξα
2 · nS = Πα

2 . (10.11)

10.3 Energy imbalance

Neglecting grain-boundary energy, the inequality (4.1) remains the appropriate form of the second law
in all motions of the body. Moreover, since S is time-independent,

˙∫

R

ψ dV =
∫

R

ψ̇ dV. (10.12)

As before, we shrink R to an arbitrary subsurface P of S. Then (10.12) vanishes and, since Pext(R) =
Pint(R) with Pint(R) given by (10.5), and since P is arbitrary, we are led to the dissipation inequality

τ · [[u̇]] +
A∑

α=1

(Πα
1 γ̇α

1 + Πα
2 γ̇α

2 ) ≥ 0. (10.13)

We close the theory by specifying constitutive equations for the internal microforces Πα
1 and Πα

2 and
the grain-boundary shear stress τ .
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10.4 Constitutive relations

With a view toward specifying orientational variables appropriate to constitutive equations for the
grain boundary, consider a fixed reference lattice and let R1 and R2 denote the orthogonal tensors that
define the relative orientations of grains 1 and 2 relative to this fixed lattice. Further, let s̄α and m̄α

denote the slip direction and slip plane normal for α measured in the reference lattice and define the
slip-orientation pair Oα

1 by
Oα

1 = (|R�
1nS · s̄α|, |R�

1nS · m̄α|). (10.14)

Appropriate variables for grain 1 would then seem to be the normal R�
1nS to the grain-boundary in the

reference lattice measured with respect to grain 1, the misorientation R2R�
1 relative to grain 1, and the

slip-orientation pair Oα
1 :

(R2R�
1,R

�
1nS , Oα

1 ).

Similarly, reversing the roles of the two grains in (10.14), the appropriate variables for grain 2 would be

(R1R�
2,R

�
2nS , Oα

2 ),

with Oα
2 the natural counterpart of (10.14) for grain 2. If we identify the reference lattice with the

lattice as oriented in grain 1, then R1 = 1, R = R2, sα
1 = s̄α, mα

1 = m̄α, sα
2 = Rs̄α, mα

2 = Rm̄α,

Oα
1 = (|nS · sα

1 |, |nS · mα
1 |), Oα

2 = (|nS · sα
2 |, |nS · mα

2 |),

and the appropriate orientational variables for grains 1 and 2, respectively, become

(R,nS , Oα
1 ) and (R�,R�nS , Oα

2 ).

Guided by the foregoing discussion, the bulk constitutive equations (5.8), and the dissipation in-
equality (10.13), we assume that there is a constitutive function Φ > 0 and a scalar δ > 0 such that

Πα
1 =ζα

1 |γ̇α
1 |δsgn γ̇α

1 , ζα
1 = κΦ(R,nS , Oα

1 ),

Πα
2 =ζα

2 |γ̇α
2 |δsgn γ̇α

2 , ζα
2 = κΦ(R�,R�nS , Oα

2 ),

}
(10.15)

where κ > 0, defined by

κ̇ = −h(κ)
A∑

β=1

(|γ̇β
1 | + |γ̇β

2 |), κ(x, 0) = 1, (10.16)

represents softening (or hardening) due to slip accumulated at the grain boundary. (We would expect
softening, since the continued accumulation of slip should induce disorder in the grain boundary.)

We assume that the shear stress τ is a function of the grain-boundary slip-rate

d = [[u̇]].

We consider a simple constitutive relation for τ of a form similar to that assumed for Πα
i , in which the

role of sgn γ̇α
1 is replaced by the grain-boundary slip-direction d/|d|. Precisely, we assume that

τ = κ ϕ(nS ,R) |d|δ d
|d| , (10.17)

with ϕ > 0, so that, by (10.16), the accumulation of bulk slip at the grain boundary induces softening
in the relation between τ and d.

It is clear that the constitutive relations developed above are consistent with the dissipation inequal-
ity (10.13).
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10.5 Viscoplastic yield conditions for the grain-boundary

The force balances (10.10) and (10.11) supplemented by the constitutive relations (10.15) and (10.17)
play the role of viscoplastic yield conditions for the grain boundary. These consist of the microtraction
conditions

−ξα
1 · nS = ζα

1 |γ̇α
1 |δsgn γ̇α

1 , ζα
1 = κΦ(R,nS , Oα

1 ),

ξα
2 · nS = ζα

2 |γ̇α
2 |δsgn γ̇α

2 , ζα
2 = κΦ(R�,R�nS , Oα

2 )

}
(10.18)

for each slip system α, where κ satisfies (10.16), together with a condition

(
TnS

)
tan

= κ ϕ(nS ,R) |d|δ d
|d| (10.19)

for the macroscopic shear stress.
Note that Φ(R,nS , Oα

1 ), Φ(R�,R�nS , Oα
2 ), and ϕ(nS ,R) are prescribed once and for all, given the

misorientation, the grain-boundary normal, and the Schmid tensors for the individual slip systems.
Moreover, these moduli are independent of time and dependent on x only when the grain boundary is
nonplanar.

In most cases of interest the rate-dependence is small. In fact, the rate-independent theory offers
insight into the implications of the grain boundary conditions. The rate independent limit of (10.18) is
obtained by formally passing to the limit as δ → 0+. The result for grain i and slip system α may be
stated as follows: when the microtraction lies within the yield range the slip on α at the grain-boundary
vanishes,

−ζα
i < (−1)iξα

i · nS < ζα
i , γ̇α

i = 0; (10.20)

on the other hand, when the microtraction reaches either of the two yield limits, then slip of the right
sign is possible,

(−1)iξα
i · nS = +ζα

i , γ̇α
i ≥ 0,

(−1)iξα
i · nS = −ζα

i , γ̇α
i ≤ 0.

}
(10.21)

Thus, in contrast to the bulk yield conditions (6.2) and (6.3), the condition (10.20) and (10.21) mark
a transition in boundary conditions from the kinematic condition γ̇α

i = 0 (cf. (8.2)) to a microtraction
condition prescribing ξα

i · nS . Further, grain boundary flow requires a content of GNDs sufficient
to drive the microtraction to its yield value, and for that reason would generally occur sometime after
yield has occured within the adjacent bulk material. The rate-independent limit of (10.19) has a strictly
analogous form and marks a change in boundary condition from null macroscopic slip to a condition
on the common value of the macroscopic shear stress.

11 Strict plane-strain

11.1 General remarks

Next, by (9.10), the microstress conditions (10.18) at the grain boundary take the form

c(sα
1 · g) sα

1 · nS = −ζα
1 |γ̇α

1 |δsgn γ̇α
1 , c(sα

2 · g) sα
2 · nS = ζα

2 |γ̇α
2 |δsgn γ̇α

2 , (11.1)

α = 1, . . . , A, relations that may also be written in terms of the slip gradients using (9.11). The
result (11.1) has an interesting consequence that is most easily discussed within a rate-independent
setting (δ = 0). The grain-boundary conditions then require that for, say slip system α in grain 1,
−c(sα

1 · g) sα
1 · nS lie between ±ζα

1 , with flow possible at the grain boundary on α only when one of the
values ±ζα

1 is attained. Thus (11.1) implies that

sα
i · gi = ζ̄α

i , ζ̄α
i = (−1)i ζ

α
i sgn γ̇α

i

c(sα
i · nS)

for each grain i and each active slip system α for grain i that is nontangent in the sense that sα
i ·nS �= 0.

Then, neglecting softening as described by (10.16), ζ̄α
i is independent of time and, if the interface is
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planar, also independent of x. In any event, if there are at least two active nontangent slip systems for
grain i, then gi is temporally constant:

ġi = 0. (11.2)

The foregoing conditions have interesting and important consequences. Consider a body under
monotone increasing loading, and neglect grain boundary softening or hardening (κ ≡ 1).

(a) In the initial stages following the onset of plastic flow, the Burgers vector g in each grain should be
small and hence the microtraction conditions (10.20) would imply that γ̇α

i = 0 for both grains and all
slip systems. Thus in this initial stage the grain boundary acts as a barrier for plastic slip. Moreover,
the constraints γ̇α

i = 0 should induce increasing slip gradients on each of the slip systems near S and
this in turn should result in an increase in the magnitude of g at S in each of the grains. This effect
should be local and not apparent away from the grain boundary, where the accumulation of GNDs
would be of lesser magnitude. Thus we would expect |g| to exhibit a sharp peak during the initial
stages of the loading.

(b) As the loading increases the Burgers vector g should increase in magnitude until for some grain i
and nontangent slip system α, sα

i ·gi reaches the threshold value ζ̄α
i . At this point, although the loading

continues to increase, sα
i ·gi can no longer increase. Further, if on a second nontangent slip system β in

grain i, sβ
i · gi reaches its threshold value, and if both sα

i · gi and sβ
i · gi remain at their threshold values,

as would be expected, then gi itself cannot thereafter vary with time.

The behavior specified in (a) and (b), which is a consequence of the microtraction conditions at the
grain boundary seems consistent with the experiments of Sun et al. (1998, 2000).

Finally, if the material is mildly rate-dependent, then one would expect the behaviour described in
(a) and (b), at least qualitatively.

11.2 An explicit solution: accumulation of GNDs at the grain boundary

We now describe an example, within the context of strict plane strain, for which an explicit analytical
solution can be found. As we shall see, the qualitative behavior of this solution is consistent with the
discussion in (a) and (b) above.

�
x

p

p
crystalline
half-space

rigid
substrate

s2

s1

����
����
����
����
����
����
����
����
����
����
����
����
���

�

�

����
����

Figure 1: Simplified model of a grain boundary between a grain with slip systems aligned for easy flow and a
grain whose slip system alignment severely inhibits flow.

This solution involves a semi-infinite compressed specimen that abuts a rigid material and has two
active slip systems symmetrically oriented with respect to the axis of compression. The solution, which
is exact, may be viewed as an approximation to a situation involving a grain boundary between a grain
with slip systems aligned for easy flow and a grain whose slip system alignment severely inhibits flow
(Fig. 1).

Precisely, we consider a single-crystal occupying the half-plane {(x1, x2) : x1 > 0}, with grain
boundary the line x1 = 0. Since the adjacent crystal, say crystal 2, is viewed as rigid, we may restrict
attention to grain 1 and, without danger of confusion, omit the subscript 1 when it labels that grain.
We assume that only two slip systems are active and that the x1-axis is an axis of symmetry of the
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crystal; we therefore let

s1 = cos θ
2 e1 − sin θ

2 e2, m1 = sin θ
2 e1 + cos θ

2 e2,

s2 = cos θ
2 e1 + sin θ

2 e2, m2 = − sin θ
2 e1 + cos θ

2 e2,
(11.3)

with θ a fixed angle and e1 and e2 the unit vectors that mark the x1 and x2 axes.
We restrict attention to a simplified situation in which all fields are independent of x2, and write x

for x1. The basic unknowns of the problem are the displacement u and the slips γα, and we assume
that the displacement is horizontal and the slip is symmetric with respect to the x-axis, i.e.,

u = ue1, γ1 = −γ2 =: γ. (11.4)

For simplicity, we restrict attention to the rate-independent theory, but allow for bulk hardening
and grain-boundary softening. We assume that the bulk hardening matrix kαβ in (5.10) is constant
and symmetric with k11 = k22. Thus σ1 = σ2 =: σ satisfies

σ̇ = k|γ̇|, σ(x, 0) = σ0 > 0, (11.5)

with k = k11 + k12 = k12 + k22 > 0.
By symmetry and since the grain boundary is flat, Φ(R,nS , Oα

1 ) is constant and independent of
α. We assume that the function h that characterizes grain-boundary softening is strictly positive and
constant. Thus, by (10.15) and (10.16), the slip resistances ζ1 = ζ2 =: ζ for the grain boundary evolve
according to

ζ̇ =
{

−h|γ̇|, ζ̄0 < ζ < ζ0 = ζ(0),
0, ζ = ζ̄0,

(11.6)

with ζ0 = Φ, ζ̄0 and h positive constants. The truncation of (11.6) at ζ̄0 means that the grain boundary
cannot soften indefinitely.

We look for solutions of the equilibrium equation divT = 0 (cf. (3.5)) supplemented by the rate-
independent yield conditions (6.2) and (6.3). Regarding the boundary conditions, we assume that a
compressive load is applied at x = ∞, i.e.,

Te1 → −pe1 as x → ∞, (11.7)

where the loading p = p(t) > 0 is a positive, monotone increasing function of time. In conjunction with
this we assume that no microtraction acts on the crystal at infinity,

ξα · e1 → 0 as x → ∞. (11.8)

At the grain boundary x = 0, we have the condition

u(0, t) = 0 (11.9)

as well as the rate-independent grain-boundary yield conditions (10.20) and (10.21).
In this simple setting, the displacement u and the slip γ may be determined explicitly as functions

of (x, t). Since p(t) is invertible with respect to time, we shall write u and γ as functions of x and the
loading p.12

We prefer to state the solution first and then give its derivation. Letting E denote Young’s modulus
and ν Poisson’s ratio, and recalling that c and k are defined in (9.9) and (11.5), the parameters and
functions involved in the solution consist of:
(a) a boundary layer thickness

L =

√
c(1 − ν2) sin2 θ

E sin2 θ + 2k(1 − ν2)
> 0; (11.10)

12Rather than of x and t. By rate-independence, time only occurs as a parameter in the equations for u and γ, so that
it is meaningful to choose the loading as the parameter controlling the evolution of the solution.
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(b) pressures

p1 =
2(1 − ν)

(1 − 2ν) sin θ
σ0, p2 =

2(1 − ν)
(1 − 2ν) sin θ

(
σ0 +

ζ0

L

)
,

and p3 =
2(1 − ν)

(1 − 2ν) sin θ

[
σ0 +

ζ0

L
+

ζ0 − ζ̄0

L

(
c sin2 θ

2hL
− 1

)]
;

(11.11)

(c) bulk and grain boundary forcing functions

r(p) =
L2(1 − 2ν)

c(1 − ν) sin θ
(p − p1) and s(p) =

2L(ζ0 − hr(p))
c sin2 θ − 2hL

. (11.12)

(Note that s(p2) = r(p2) and that r(p) is an increasing function of the loading, while s(p) is decreasing.)
Our solution may then be stated as follows:

(i) For p < p1, the material behaves elastically, i.e., γ(x, p) ≡ 0.

(ii) For p1 ≤ p < p2,
γ(x, p) = −r(p)

(
1 − e−x/L

)
, (11.13)

where r(p), given by (11.12)1, is a linear increasing function of p. In this loading range, γ(0, p) = 0
and the grain boundary is microclamped: p2 is in fact the threshold for the activation of slip at
the grain boundary. Moreover, the GND edge densities for the two available slip systems coincide,
and writing

ρ� := ρ1
� = ρ2

�,

we have

ρ�(x, p) =
r(p) sin θ

L
e−x/L (11.14)

(Fig. 2). Hence, GNDs accumulate in a boundary layer with characteristic length L at x = 0.
Further, in this initial stage of plastic deformation the dislocation density at the grain boundary
increases linearly with the loading.

�

�

x

��(x, p)

Figure 2: Typical plot of dislocation density ��(x, p) as a function of x for p > p1.

(iii) For p2 ≤ p < p3,
γ(x, p) = −r(p) + s(p)e−x/L, (11.15)

so that, since γ(0, p) �= 0, grain boundary slip is activated. Moreover,

ρ�(x, p) =
s(p) sin θ

L
e−x/L, (11.16)

and, as in (ii), GNDs accumulate in a boundary layer with characteristic length L, but now, as
a consequence of softening at the grain boundary, the GND density at x = 0 decreases as the
loading increases.

(iv) For p ≥ p3,
γ(x, p) = −r(p) + s(p3)e−x/L, (11.17)

with s(p3) = 2Lζ̄0/c sin2 θ, and hence

ρ�(x, p) =
s(p3) sin θ

L
e−x/L. (11.18)

In this stage the grain boundary cannot soften further, and the GND density remains constant at
the boundary as the loading increases.
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Figure 3: Variation of accumulated slip |γ(0, p)| and dislocation density ��(0, p) at the grain boundary as a
function of the loading p.

Note that, defining the average accumulated slip in bulk as

γbulk(p) = lim
R→∞

1
R

∫ R

0

γ(x, p) dx,

the identity
r(p) = −γbulk(p),

which follows from (11.13), (11.15), and (11.17), shows that the bulk forcing function measures the
accumulated slip in bulk. Analogously, the difference between the grain boundary and bulk forcing
functions,

s(p) − r(p) = γ(0, p), p > p2,

measures the slip accumulated at the interface.
To prove (i), (ii) and (iii), note first that, by (11.4), the displacement gradient and plastic strain

tensor have the form

∇u =
(

ux 0
0 0

)
, Hp =

(
γ sin θ 0

0 −γ sin θ

)
, (11.19)

so that, if the elasticity tensor is isotropic, the stress tensor T = λ tr(Ee)I + 2µEe is is given by

T =
(

(λ + 2µ)ux − 2µγ sin θ 0
0 λux + 2µγ sin θ

)
, (11.20)

with λ and µ the Lamé moduli. Inserting this expression into the force balance divT = 0, we obtain
the differential equation

(λ + 2µ)uxx − 2µγx sin θ = 0, (11.21)

with the boundary conditions (cf. (11.7))
{

u = 0 at x = 0,

(λ + 2µ)ux − 2µγ sin θ → −p as x → ∞.
(11.22)

By (11.21) and (11.22)2,

ux =
1

λ + 2µ
(2µγ sin θ − p), (11.23)

a relation that with (11.22)1 allows us to determine the displacement as a function of the slip γ.
Consider now the generalized yield conditions (6.2) and (6.3). With the quadratic defect energy

(9.9) we have, by (9.6),
ξα = c (g · sα) sα, g = −γx sin θe2, (11.24)

and hence
div ξ1 = −div ξ2 =

c

2
sin2 θ γxx.

From (3.6), (11.3), and (11.21), τ1 = −τ2 = µ sin θ(ux − 2γ sin θ), or equivalently, using (11.23),

τ1 = −τ2 = − µ sin θ

λ + 2µ
(2(λ + µ)γ sin θ + p) .
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Inserting these expressions into (6.2) and (6.3), we obtain the yield conditions

−σ <
c

2
γxx sin2 θ − E sin2 θ

2(1 − ν2)
γ − (1 − 2ν) sin θ

2(1 − ν)
p < σ, γ̇ = 0, (11.25)

and
c

2
γxx sin2 θ − E sin2 θ

2(1 − ν2)
γ − (1 − 2ν) sin θ

2(1 − ν)
p = +σ, γ̇ ≥ 0,

c

2
γxx sin2 θ − E sin2 θ

2(1 − ν2)
γ − (1 − 2ν) sin θ

2(1 − ν)
p = −σ, γ̇ ≤ 0,





(11.26)

with E Young’s modulus and ν Poisson’s ratio.
Consider now a monotone increasing loading program p = p(t) > 0, with p(0) = 0 and γ(x, 0) ≡ 0.

Then for some initial interval of time the elastic-range inequality (11.25) has the form

−σ0 < − (1 − 2ν) sin θ

2(1 − ν)
p < σ0, γ̇ = 0;

the solution therefore remains elastic until p = p1, which establishes (i).
When p = p1 the lower yield condition in (11.25) is attained; thus for p > p1 the crystal will flow

with γ̇ ≤ 0, so that
γ ≤ 0. (11.27)

Thus the grain-boundary relations (10.20) and (10.21), for i = 2, take the form

c

2
γx(0, p) sin2 θ > −ζ, γ̇(0, p) = 0, (11.28)

and
c

2
γx(0, p) sin2 θ = −ζ, γ̇(0, p) ≤ 0, (11.29)

where ζ evolves according to the softening equation (11.6).
Next, integrating the hardening equation (11.5) we obtain

σ = −kγ + σ0, (11.30)

which, when inserted into (11.26), yields the ordinary differential equation

γxx − 1
L2

(γ + r(p)) = 0. (11.31)

The associated boundary condition at infinity follows from (11.8) and (11.24):

γx → 0 as x → ∞. (11.32)

Since γ(0, p) = 0 for p = p1, we may conclude from (11.28) that γ(0, p) = 0 for p > p1 as long as the
inequality in (11.28) is satisfied. The solution of (11.31) subject to (11.32) and

γ(0, p) = 0 (11.33)

is (11.13). By (11.28), the solution (11.13) will hold as long as

−cr(p) sin2 θ

2L
> −ζ0, (11.34)

or equivalently, by (11.12)1, as long as p < p2 with p2 given by (11.11)2. To obtain (11.14), it is sufficient
to note that, by (2.4), the GND edge densities of the two slip systems coincide and are proportional to
the slip gradient:

ρ1
� = ρ2

� = −γx sin θ. (11.35)
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When p > p2, slip is activated at the grain boundary, and γ̇(0, p) is no longer required to vanish. The
basic equation (11.31) for slip in bulk remains unchanged, as well as the boundary conditions (11.32),
but (11.33) is now replaced by the grain boundary condition (11.29):

c

2
γx(0, p) sin2 θ = −ζ. (11.36)

Integrating the softening equation (11.6) we obtain

ζ = hγ + ζ0, (11.37)

which, when inserted into (11.36), yields

c

2
γx(0, p) sin2 θ + hγ(0, p) + ζ0 = 0. (11.38)

The solution of (11.31) subject to the boundary conditions (11.38) and (11.32) yields (11.15). Finally,
(11.16) follows from (11.35).

The boundary condition (11.38) holds as long as hγ(0, p) + ζ0 > ζ̄0. A straightforward computation
shows that ζ̄0 is reached at p = p3, so that, for p > p3, the grain boundary condition (11.36) becomes

c

2
γx(0, p) sin2 θ = −ζ̄0, (11.39)

which yields (11.17).
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