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Abstract. Equations governing the flow of fluid containing visco-hyperelastic particles are devel-
oped in an Eulerian framework. The novel feature introduced here is to write an evolution equation
for the strain. It is envisioned that this will simplify numerical codes which typically compute the
strain on Lagrangian meshes moving through Eulerian meshes. Existence results for the flow of linear
visco-hyperelastic particles in a Newtonian fluid are established using a Galerkin scheme.
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1. Introduction. When modeling physical systems that contain both fluid and
solid particles one is always confronted with the dilemma that fluids are naturally
described using the Eulerian (spatial) description yet solids are naturally described in
a Lagrangian (referential) frame. From an analysts point of view this decoupling of the
problem presents significant technical challenges. The equation for the fluid takes place
on a time dependent domain (the region not currently occupied by the solid), and the
regularity of the solution is usually low so that the change of coordinates relating the
two descriptions is not smooth. The numerical simulation of such systems is similarly
plagued. If the solid particles are represented by a Lagrangian mesh it is necessary
to interpolate their image into the Eulerian mesh, and this is expensive and degrades
accuracy [12, 26]. Moreover, the absence of a satisfactory theory for the underlying
equations undermines the analysis of these algorithms.

We consider the equations for the flow of a fluid containing visco-hyperelastic solid parti-
cles. We pose the basic equations in a purely Eulerian description; numerical simulation
of such a system will only require a single mesh for the Eulerian domain. The system
of equations we propose contains the classical visco-hyperelasticity equations for which
there is no satisfactory theory of existence and uniqueness [7, 16]. However, we consider
an approximation for which it is possible to develop a reasonable existence theory. This
approximation corresponds to an appropriate description of visco-hyperelasticity for
the solid particles for which the strains but not the rotations are small. This simplified
system should provide a good model problem for the analysis and comparison of various
numerical algorithms.
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Elastic materials are typically described in Lagrangian coordinates since the stress de-
pends upon the deformation gradient F from a fixed configuration, and F is not im-
mediately available in an Eulerian description. We circumvented this by writing an
evolution equation for F , our equation (2.5). Our description also utilizes a “phase”
variable φ equal to ±1 in the fluid/solid regions. This approach has been used in the
past for the simulation of the flow of immiscible fluids [5, 17, 18, 25, 24], and essentially
circumvents the “mapping” problem encountered by the numerical analysts described
in the first paragraph.

The interaction of Eulerian and Lagrangian descriptions is ubiquitous in the plasticity
literature [1, 2]. Classically numerical computations are based upon a Lagrangian mesh
[1], and the large plastic deformations can result in tangled meshes and ill-conditioned
systems of equations. The computations in [11] utilize an Eulerian description which
contains a free-boundary problem to determine the surface of the solid. Since the
problem in [11] was one-dimensional it was relatively easy to track the motion of the
free surface through the mesh; however, this would seem a difficult task in multiple
dimensions where, for example, topological changes could occur due to contact. This
problem of determining the location of the particles (and their surfaces) is circumvented
here by exploiting a phase variable to track them.

1.1. Notation. We adopt the standard notation of continuum mechanics [14]. X ∈
R
d is the material description, x = χ(X, t) is the position of particle X at time t, and

the velocity is given by v = ẋ where the dot indicates the partial derivative with
respect to time with X fixed (the material or convective derivative). In the Eulerian
description (x, t) the chain rule gives ġ = gt + v.∇g where ∇ is the gradient in the
x variables. Classical mechanics assumes that χ : Rd → R

d is a diffeomorphism and
the deformation gradient F = [∂xi/∂Xα] is the Jacobian of this mapping and has
J = det(F ) > 0. Below we will consider incompressible materials for which J = 1.
If the elastic part of the stress of a solid particle depends only upon the deformation
gradient F , it must take the form (1/J)DW(F )F T where W : Rd×d → R is the strain
energy function and (DW)iα = ∂W/∂Fiα is the Piola Kirchhoff stress tensor. The
strain energy function must satisfy W(RU) =W(U) for all proper orthogonal matrices
(i.e. RRT = I, det(R) > 0) and hence DW(RU) = RDW(U). If F = RU with U = UT

represents the polar decomposition of the deformation gradient it follows that the stress
becomes (1/J)RDW(U)URT . When the Piola Kirchhoff stress tensor is the gradient
of a strain energy function, as above, the material is called hyperelastic.

Classical linear elasticity assumes that the displacement u = x − X is small so that
F = I + H, where H = ∇Xu is small. In this situation the polar decomposition is,
to first order, F ' (I + Hskew)(I + Hsym) where Hskew and Hsym are the skew and
symmetric parts of H. If the “residual stress” DW(I) vanishes, then, to first order,
the stress becomes C(Hsym) where C : Rd×d → R

d×d is the second derivative of W at
the identity. Symmetry of the stress tensor implies C is symmetric in the sense that
C(A) · B = A · C(B) where A · B =

∑
ij AijBij is the Frobenius inner product. It
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is traditional to assume that W assumes its minimum value at I and that the second
derivative is strictly positive definite, that is C(A) · A ≥ c|A|2, where c > 0 and
|A|2 = A ·A is the Frobenius norm. In this situation C induces an inner product (., .)C
on Rd×d.

Below Ω ⊂ R
d will denote a bounded domain with Lipschitz boundary. Standard

notation is adopted for the Lebesgue spaces, Lp(Ω), and the Sobolev spaces, Wm,p(Ω)
or Hm(Ω). The dual exponent to p will be denoted by p′, 1/p + 1/p′ = 1. Solutions
of various evolution problems will be functions from [0, T ] into these spaces, and we
adopt the usual notion, L2[0, T ;H1(Ω)], C[0, T ;H1(Ω)], etc. to indicate the temporal
regularity of such functions. For vector or matrix valued quantities, such as the velocity
v or deformation gradient F , we write v ∈ L2(Ω), F ∈ L2(Ω), to indicate that each
component lies in the specified space. Strong convergence of a sequence will be indicated
as vn → v, and weak convergence by vn ⇀ v.

Divergences of vectors and matrices are denoted div(v) = vi,i and div(T )j = Tij,j, and
gradients of vector valued quantities are interpreted as matrices, (∇v)ij = vi,j. Here
indices after the comma represent partial derivatives and the summation convention
is used. The symmetric part of the velocity gradient (stretching tensor) is written as
D(u), and the skew part written as W (v) (spin tensor). Inner products of vectors
v, w ∈ Rd are written as v.w and the Frobenius inner product of two matrices A,
B ∈ Rd×d is denoted by A·B =

∑
i,j AijBij. We frequently use the elementary identities

AB · C = A · CBT = B · ATC.

1.2. Outline. In the next section we present an Eulerian description of a system
consisting of a fluid containing particles with a focus on the situation where the fluid
is Newtonian and the particles are visco-hyperelastic. As stated previously, currently
there is no satisfactory existence theory for solutions of the viscoelastic equations, so
in Section 3 we develop approximate equations which model situations for which the
strain in the solid is small. The final section establishes existence of solutions of the
approximate equations. The proof of existence draws heavily from the ideas developed
in DiPerna and Lions [8] and Lions [22] where convection equations and fluids with
variable density are studied.

2. Eulerian Description of Fluid/Solid Particles. Let Ω ⊂ Rd, (d = 2 or 3)
be a domain with boundary ∂Ω. We consider a model where Ω is filled with a fluid
containing solid particles and write

Ω̄ = Ω̄f (t) ∪ Ω̄s(t)

where Ωf is the region occupied by the fluid and Ωs is the region occupied by the solid
particles, each of which may be disconnected.

Formulae for the density, stress tensor, etc. at a point (x, t) will depend upon whether
fluid is currently at x, (x ∈ Ωf (t)), or a solid particle is currently at the position x. For
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example, for incompressible materials,

ρ =

{
ρf in the fluid, and
ρs in the solid,

ρf , ρs ∈ R+, and a similar formula holds for the stress tensor T . A convenient way to
write this is to introduce a phase function φ(x, t) equal to +1 in the fluid and −1 in
the solid,

φ(x, t) =

{
+1 x ∈ Ωf (t),
−1 x ∈ Ωs(t).

We think of the level set φ = 0 as the solid/fluid interface. Then

ρ =
1 + φ

2
ρf +

1− φ
2

ρs ≡ χfρf + χsρs,

where χf and χs are the characteristic functions of the fluid an solid regions respectively.

Notice that when expressed in Lagrangian coordinates φ is independent of time, φ(x(X, t), t) =
Φ(X), so φ̇ = 0 or, equivalently,

φt + v.∇φ = 0(2.1)

in an Eulerian frame (∇ = ∇x). Since φ is discontinuous this equation must be inter-
preted in the usual weak sense, that is,∫ T

0

∫
Ω

φ(ψt + v.∇ψ + div(v)ψ) =

∫
Ω

φψ|T0 +

∫ T

0

∫
∂Ω

φψv.n

for smooth functions ψ. In order to avoid multiplying distributions it may be necessary
to require the velocity v to have some regularity. We will assume that the fluid is viscous
so that it sticks to the particles. In this situation classical solutions have v continuous
throughout Ω.

Balance of Mass. Balance of mass requires that

ρt + div(ρv) = 0.

Since ρ is not continuous: this equation is required to hold in the weak sense:∫ T

0

∫
Ω

ρ(ψt + v.∇ψ) =

∫
Ω

ρψ|T0 +

∫ T

0

∫
∂Ω

ψρv.n.(2.2)

When the velocity field is divergence free, div(v) = 0, the equations for balance of mass
and convection of φ are identical. In fact, since ρ = (1/2)(ρf − ρs)φ+ (ρf + ρs)/2 is an
affine function of φ, the weak form of balance of mass is satisfied whenever the weak
statement for φ holds. To observe this, notice that if φ satisfies the weak form of the
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convection equation, then so too does αφ+β for any α, β ∈ R (assuming that v satisfies
some minimal regularity), and hence so too does ρ.

The observation that affine functions of φ satisfy the same weak statement as φ is a
special case of a theorem by Liouville and a more general result by DiPerna and Lions
[8]. Under suitable regularity assumptions on v, any continuous function of the form
β(φ) with β : R→ R will also be a weak solution of the convection equation.

Balance of Momentum. We write balance of momentum in a weak form to avoid
having to explicitly introduce tractions across the fluid solid interfaces. This weak
equation represents balance of momentum in situations for which the velocity is smooth
(at least continuous) and the density and stresses possibly discontinuous:∫

Ω

ρvt.w + ρ(v.∇)v.w + T ·D(w) =

∫
Ω

ρf.w(2.3)

for smooth vector fields w : Ω → R
d vanishing on ∂Ω. Here T = T T is the Cauchy

stress tensor, and D(w) = (∇w + (∇w)T )/2 is the stretching tensor for the field w.

The constitutive equation for the stress tensor differs for fluids and solids, so we write

T = χfTf + χsTs.

We consider the situation where Tf depends upon the stretching tensor D(v), while
Ts depends additionally upon the deformation gradient F . The prototypical situation
of an incompressible Navier Stokes fluid containing incompressible visco-hyperelastic
particles would have

Tf = −pI + µfD(v), and Ts = −pI + µfD(v) +DW(F )F T .(2.4)

Here W : Rd×d → R is the strain-energy function, and p is the pressure.

Computing the Deformation Gradient. We finally address the question of how
to compute the deformation gradient tensor. An application of the chain rule gives an
Eulerian description,

Ḟ =
∂

∂t

∂x

∂X
(X, t) =

∂v

∂X
(X, t) =

∂v

∂x
(x, t)

∂x

∂X
(X, t),

which we write as
Ft + (v.∇)F = (∇v)F ;(2.5)

the product on the right being a matrix product. Notice that in order to compute T ,
we need only compute F in the solid where φ = −1; in fact, F would become a rather
wild function in the fluid. Observe that if we define Fs = χsF , then since χ̇s = 0 we
obtain

Fst + (v.∇)Fs = (∇v)Fs.

Clearly solutions of this equation are those obtained simply by multiplying the initial
data for equation (2.5) by χs(0); in effect, specifying F = 0 in the fluid.
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2.1. Summary. The equations for the evolution of an incompressible Newtonian
fluid carrying incompressible visco-hyperelastic particles are∫

Ω

ρ(vt + (v.∇)v).w + p div(w) + µD(v) ·D(w) + χsDW(F )F T ·D(w) =

∫
Ω

ρf.w,

∇.v = 0,

φt + v.∇φ = 0,

and

Ft + (v.∇)F = (∇v)F.

The characteristic functions χf , χs are computed from φ as (1± φ)/2 and the density
and viscosity are computed as ρ = ρfχf + ρsχs and µ = µfχf + µsχs with ρf , ρs and
µf , µs each non-negative.

Initial values are specified for the velocity v|t=0 = v0 and the phase function φ|t=0 = φ0.
Typically the initial deformation gradient is the identity on the solid particles, and set
arbitrarily to zero in the fluid, F0 = χs(0)I. If non-zero Dirichlet boundary data on
the velocity is specified it is necessary to specify φ and F on those portions of ∂Ω for
which v.n < 0; that is, specify if fluid or solid particles are entering the domain and for
the solid particles it is necessary to specify their deformation gradient (we set F = 0 in
the fluid). While it is easy to specify traction boundary conditions for the momentum
equation, this can give rise to technical problems since it is possible that the portion of
∂Ω where v.n < 0 varies with time in an implicit fashion, and this is where boundary
values for φ and F are specified. Also, it is not clear what traction to specify on interior
portions of particles emanating from the domain.

2.2. Balance of Energy. As with the density we write µ = µfχf + µsχs for the
viscosity and will assume that µf , µs > 0. For ease of exposition we will consider the
situation where v vanishes on ∂Ω (Dirichlet boundary conditions):

v|∂Ω = 0.

Formal calculations are used to develop an energy estimate. Put w = v in the momen-
tum equation and select ψ = |v|2/2 in the weak statement of the balance of mass (2.2)
to obtain∫

Ω

ρ(|v|2/2)t + ρv.∇(|v|2/2) + µ|D(v)|2 + χsDW(F ) · (∇v)F =

∫
Ω

ρf.v,

and ∫ T

0

∫
Ω

ρ
(
(|v|2/2)t + v.∇(|v|2/2)

)
=

∫
Ω

ρ(|v|2/2)
∣∣T
0
.
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The condition div(v) = 0 was used to eliminate the term involving the pressure, and
the Dirichlet boundary data on v eliminated the boundary term in the weak statement
of balance of mass. Adding these equations gives∫

Ω

ρ(|v|2/2)|T0 +

∫ T

0

∫
Ω

µ|D(v)|2 + χsDW(F ) · (∇v)F =

∫
Ω

ρf.v.

To accommodate the term involving the elastic energy, recall equation (2.5) satisfied by
the deformation gradient: Ft + (v.∇)F = (∇v)F . Since χ̇s = 0 it follows that

χsDW(F ) · (∇v)F = χs (W(F )t + (v.∇)W(F )) = (χsW(F ))t + (v.∇)(χsW(F )).

The Dirichlet data assumed for v then allows us to conclude that∫ T

0

∫
Ω

χsDW(F ) · (∇v)F =

∫
Ω

χsW(F )
∣∣T
0
.

Combining the above equations results in the classical energy equation∫
Ω

[
ρ(|v|2/2) + χsW(F )

]T
0

+

∫ T

0

∫
Ω

µ|D(v)|2 =

∫
Ω

ρf.v.(2.6)

Notice that in the context of a Galerkin approximation v will typically be smooth, so
classical solutions of the equation for F can be obtained using the method of char-
acteristics, and hence the above calculations would be justified. Upon assuming that√
ρf ∈ L2[0, T ;L2(Ω)] an application of the Korn and Gronwall inequalities shows that

the velocity is bounded in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)]. This energy equation is
classical [13, 14]; the unusual treatment here being that the calculations are done in
Eulerian coordinates.

2.3. Surface Tension. Balance of momentum as stated in equation (2.3) neglects
surface tension. Surface tension in the fluid gives rise to a discontinuity of the normal
stress, Tn, at the solid/fluid interface proportional to the interfacial mean curvature κ.
This stress is a measure supported on the surface and therefore singular; however, it is
possible to approximate it using ideas of DiGorgi [6]. If η is a smooth function then
formal asymptotic expansions [4, 27, 28] show that

lim
ε→0

∫
Ω

(
−ε∆η + (1/ε)W ′(η)

)
∇η.w →

∫
S
(−4/3)κw.n,

and

lim
ε→0

∫
Ω

(
−ε∆η + (1/ε)W ′(η)

)
ξ → 0,

where W (η) = (1/2)(η2−1)2 and S = {x ∈ Ω | η(x) = 0}. It follows that the equations
for the flow of solid/fluid systems with surface tension may be approximated by∫

Ω

ρvt.w + ρ(v.∇)v.w + T ·D(w)− γ (−ε∆η + (1/ε)W ′(η))∇η.w =

∫
Ω

ρf.w
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with γ ≥ 0 and
ηt + v.∇η + γ (−ε∆η + (1/ε)W ′(η)) = 0.

Notice that for incompressible solid/fluid systems the term W ′(η)∇η = ∇W (η) can be
a absorbed into the pressure p and that ∆η∇η = div(∇η ⊗∇η) −∇|∇η|2/2, and the
term ∇|∇η|2/2 can also be so absorbed. It is possible to identify η with φ; however,
since the T depends upon φ the equation for φ would require modification in order to
recover an energy estimate similar to that stated in Section 2.2.

Lowengrub and Truskinovsky [24] and Gurtin, Polignone, and Vinals [15] derive equa-
tions to model the fluid/fluid problem but, use a Cahn-Hilliard equation for η instead
of the Cahn-Allen equation. This approach gives a conservation of η and allows fluid
particles to coalesce (“phase coarsening”). An integral part of the formulation of Gurtin
et. al. [15] was a suitable statement of the second law of thermodynamics chosen to
produce models which satisfy natural energy estimates similar to equation (2.6). The
approximation of the solid/fluid problem with surface tension introduced here also sat-
isfies a natural energy estimate; namely,∫

Ω

ρ(|v|2/2) + χsW(F ) + (ε/2)|∇η|2 + (1/ε)W (η)
∣∣T
0

+

∫ T

0

∫
Ω

µ|D(v)|2 + γ|ε∆η − (1/ε)W ′(η)|2 =

∫
Ω

ρf.v.

Chang et. al. [5] and more recently Li and Renardy [20] compute numerical approxima-
tions of the two fluid problem with surface tension by explicitly introducing a singular
term into the momentum equation and approximating the solution of equation (2.1)
using the level-set technique. In the numerical community this is considered a “com-
peting approach” to the “phase field” ideas considered here [3, 9]. The analysis of many
of these schemes is hampered by the fact that energy estimates do not hold for their
particular formulations.

2.4. Deformation Gradient and Strain Energy Functions. In this section we
digress slightly to discuss some technical issues associated with strain energy-functions,
W , and the structure of the evolution equation for the deformation gradient.

Strain Energy Functions. Recall that the elastic stress is zero in the fluid, so
is written as χsDW(F )F , where χs = (1 − φ)/2 is the characteristic function of the
solid. This can conveniently be written as DW(Fs)F

T
s with Fs = χsF . However, this

gives rise to a technical problem: physically reasonable energies are infinite when the
deformation gradient (or it’s determinant) vanish. Since there is no elastic stress in the
fluid we are tacitly assuming that DW(Fs)Fs = 0 when Fs = 0.

This technical detail can be circumvented in several ways. For example, W(I) is finite
and typically the residual stress, DW(I) = 0, vanishes. We may then write the stress
as

χsDW(F )F T = DW(Fs + χfI)F T
s .
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Defining F̂ = Fs + χfI = χsF + χfI, the elastic stress is becomes

χsDW(F )F T = DW(F̂ )(F̂ T − χfI) = DW(F̂ )F̂ T

and

F̂t + (v.∇)F̂ = (∇v)(F̂ − χfI), F̂ (0) = I.

Clearly any other stress-free state could be used in place of the identity. A variant of
this approach is to write H = F − I and W̄(H) = W(H + I). Then the equation for
the elastic stress becomes DW̄(H)(HT + χsI) and H satisfies

Ht + (v.∇)H = (∇v)(H + χsI), H(0) = 0.

From a mathematical perspectives these perturbations do not change the fundamental
structure of the equations, so below we will simply assume that W(0) is finite and
write the elastic stress as DW(F )F T where F satisfies equation (2.5) with F (0) = 0
in the fluid. The important structural feature is that the elastic stress takes the form

DW̄(F̄ )F̃ T and F̄ satisfies ˙̄F = (∇v)F̃ for suitable choices of W̄ , F̄ and F̃ .

Evolution Equation for the Deformation Gradient. We briefly discuss some
properties of the equation for the deformation gradient. One interesting observation is
that the convective derivative of the divergence of F T , div(F T ) = Fiα,i, vanishes when
div(v) = 0. To observe this, take the divergence of the equation (2.5) to obtain

Fiα,it + vkFiα,ik + vk,iFiα,k = vi,ijFjα + vi,jFjα,i.

Notice that the first term on the right vanishes since div(v) = vi,i = 0, and the last term
on the right is identical to the last term on the left, so that div(F T )t+(v.∇)div(F T ) = 0.
It follows that div(F T ) will be zero if the initial and appropriate boundary values vanish.
Unfortunately this is not so for fluid containing particles, since typically F0 = χsI and
div(F T ) is a measure supported on the boundary of the particles. However, in the
situation where div(F ) = 0 the nonlinear term (∇v)F consists of the product of a
curl free term with a divergence free term, so should be stable under weak limits [30].
This becomes apparent if we consider a weak statement of equation (2.5). Letting
Φ : (0, T ) × Ω → R

d×d be smooth with compact support and assuming div(v) = 0, we
have ∫ T

0

∫
Ω

F · (Φt + (v.∇)Φ) =

∫ T

0

∫
Ω

viΦiα,jFjα,(2.7)

where we used the relation div(F T ) = 0 to simplify the right hand side. It is now clear
that granted vε → v in Lα[0, T, Lq(Ω)], α, q > 1, and Fε ⇀

∗ F in L∞[0, T, Lp(Ω)] with
1/p+ 1/q ≤ 1, then if (vε, Fε) satisfies equation (2.7), then (v, F ) also does.

3. Equations of a Fluid with Particles Undergoing Small Strains.
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3.1. Small Strain Elasticity. Classical linear elasticity invokes an ansatz of the
form x = X + u where the displacement u is small [13, 14], so that F = I + H where
H = ∇Xu. Clearly this ansatz is not plausible for elastic particles being transported
in a fluid medium. Such particles will be subject to large translations and rotations, so
that an ansatz of the form x = x0(t) + R̂(t)(X + u) is plausible, where R̂ is a rotation,
and x0(t) is the location of the center of mass. In this situation the deformation gradient
takes the form F = R̂(I +H). If H is small, the polar decomposition is approximately
F ∼ R̂(I+Hskew)(I+Hsym). This motivates the following ansatz which we will assume
throughout this section:

• The polar decomposition of the deformation gradient takes on the form F =
R(I + E) where R is a proper rotation and E = ET is “small”.

3.2. Evolution Equations for Small Strain. We develop approximate equations
satisfied by R and E. By Ḟ = (∇v)F and F = R(I + E),

Ṙ(I + E) +RĖ = (∇v)R(I + E).

Pre-multiplying this equation by RT = R−1 and post multiplying by I −E (an approx-
imate inverse of I + E) gives

RT Ṙ + Ė = RT (∇v)R +RT (Ṙ− (∇v)R)E2 + ĖE.

The latter two terms on the right of this equation are of order O(E2), so to first order
this equation becomes

RT Ṙ + Ė = RT (∇v)R.

Since RT Ṙ is skew we may decompose this equation into skew and symmetric compo-
nents:

Ṙ = W (v)R, and Ė = RTD(v)R,

where D(v) and W (v) are the symmetric and skew components of ∇v respectively.

3.3. Linearized Shear Relation. The elastic part of the Cauchy stress tensor is
given by

DW(F )F T = DW(R(I + E))(I + E)RT

= RDW(I + E)(I + E)RT

= R
(
DW(I) + C(E) +O(E2)

)
(I + E)RT ,

where we use the notation

C(E)jβ = D2W(I)(E)jβ =
∂2W

∂Fiα∂Fjβ
(I)Eiα.

It follows that

DW(F )F T = R
(
DW(I) +DW(I)E + C(E) +O(E2)

)
RT .

It is convenient to assume that the residual stress DW(I) vanishes, in which case C is
symmetric, so to first order the Cauchy stress is given by RC(E)RT .
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3.4. Summary of the Small Strain Problem.

ρ(φ)
(
vt + (v.∇)v

)
−∇p− div

(
µ(φ)D(v) +RC(E)RT

)
= ρ(φ)f,

div(v) = 0,

φt + v.∇φ = 0,

Rt + (v.∇)R = W (v)R, and Et + (v.∇)E = RTD(v)R.

The initial data for R is specified as R|t=0 = χs(0)R0 where, as usual, χs is the char-
acteristic function of the solid region. The hyperbolic nature of the evolution equation
for R then guarantees that R vanishes in the fluid for all subsequent times.

Isotropic Elastic Stress: If the elastic stress in the solid particles is isotropic (C(QEQT ) =
QC(E)QT for proper orthogonal Q), the equations for R and E can be combined to
give a single equation for the elastic component of the stress. Since linear isotropic
functions of symmetric matrices take the form C(E) = αE + β trace(E)I, α, β ∈ R, it
follows that the Cauchy stress of an isotropic incompressible material is Te = αRERT .
A short calculation shows that

Ṫe −W (v)Te + TeW (v) = αχsD(v),

which can be used in place of the equations for R and E. This equation appears in the
plasticity literature [1].

3.5. Regularization of the Rotation. It is clear that E and the Cauchy stress
depend nonlinearly on the rotation R; moreover, R will not be smooth, since it satisfies
a hyperbolic convection equation for which W (v) enters as a coefficient. This lack of
regularity is a technical obstacle to a satisfactory existence theory. To circumvent this
difficulty we introduce a smooth rotation, Rε, that differs from R by at most ε ∼ O(E),
which is consistent with the assumption of small strain. We begin by showing that the
energy estimate is insensitive to perturbation of R. Then the regularity of Rε and the
energy estimate will be combined to establish existence for the small strain system.

There are many mathematical techniques for regularizing a function, the classical ap-
proach is to mollify with a smooth function of compact support. For example,

Rεt + (v.∇)Rε = Wε(v)Rε, Rε|t=0 = χsR0,

where Wε(v) = W (vε) is the mollified spin tensor with ε > 0 fixed. A classical solution
of the fluid solid problem would have v Lipschitz and the particles would have regular
boundaries. In this situation the particle vorticity, χsW , would be of bounded variation,
so that ‖χs(W −Wε)‖L1[0,T ;L1(Ω)] ≤ Cε. Granted this, a formal calculation shows that

‖R−Rε‖L∞[0,T ;L1(Ω)] ≤ C|χsW |L1[0,T ;BV (Ω)] ε,

so that, if ε = O(E), such regularizations are consistent with the linear theory.

In two dimensions it is possible to explicitly write down the solution of the equation
Ṙ = W (v)R. This motivates a simple but elegant regularization of the rotation R.

11



Two Dimensional Regularization. In two dimensions the spin tensor W (v) may
be written as W (v) = (ω/2)J , where ω = v2,1 − v1,2 is the vorticity and

J =

[
0 1
−1 0

]
.

Then the equation for R becomes Ṙ = (ω/2)JR, which has solution1

R = exp (ΩJ) R0 =

[
cos(Ω) sin(Ω)
− sin(Ω) cos(Ω)

]
R0,

where R0 is the initial rotation and Ω satisfies Ω̇ = ω/2 with initial data Ω0 = 0. A
natural regularization of R is given by

Rε = exp (ΩεJ) R0 =

[
cos(Ωε) sin(Ωε)
− sin(Ωε) cos(Ωε)

]
R0,

where Ωε satisfies the regularized equation

Ω̇ε − ε2∆Ω = ω/2.

In the current context a classical solution of the solid/fluid problem v would be piecewise
smooth, Lipschitz continuous, and the particles would have finite perimeter. In this
situation the ideas of Kruzkov [19] can be used to show that ‖Ω− Ωε‖L∞[0,T ;L1(Ω)] ≤ Cε.
Then

R−Rε = sin((Ω− Ωε)/2)

[
sin((Ω + Ωε)/2) − cos((Ω + Ωε)/2)
cos((Ω + Ωε)/2) sin((Ω + Ωε)/2)

]
R0,(3.1)

so ‖R−Rε‖L∞[0,T ;L1(Ω)] ≤ Cε. Thus if, ε = O(E), replacing R with Rε is consistent
with our approximation of small strains.

Convection Equation. The phase variable φ appears as a coefficient in essentially
every term of the momentum equation; in particular it multiplies quantities that would
only converge weakly when passing to the limit in a Galerkin scheme. In order to pass
to the limit it is vital to know that φ converges strongly in some Lp space. The subtle
point is that the coefficients in the equation for φ depend upon v which, in the limit,
has insufficient regularity to establish a classical solution. These issues were resolved
by DiPerna and Lions in [8].

DiPerna and Lions introduced the concept of a “renormalized” solution. A renormalized
solution is essentially a weak solution that satisfies all of the natural entropy equalities.
If φ is a classical solution of φt + (v.∇)φ = 0, then so too is β(φ), where β : R→ R is a
smooth function. In the more general nonlinear situation a similar statement holds for

1Following tradition, the primitive of ω is denoted by the upper case character Ω. Conflicts with
the notation for the domain Ω ⊂ Rd are easily resolved by context.
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convex functions β and under passage to limits the equation satisfied by β(φ) becomes
an (entropy) inequality [19].

The following theorem from [8] shows that renormalized solutions not only exist when
the function v is not smooth enough to establish a classical solution, but are also stable
under perturbation.

Theorem 3.1 (DiPerna Lions). Let Ω be a bounded domain and suppose that:

• {vn}∞n=0 ⊂ L2[0, T ;H1
0 (Ω)] is a bounded sequence, div(vn(t)) = 0 in D′(Ω) for

t ∈ [0, T ], and vn ⇀ v in L2[0, T ;H1
0 (Ω)];

• {φn}∞n=0 ⊂ L∞[0, T ;L∞(Ω)] is a bounded sequence, satisfying

∂φn
∂t

+ div(φnvn) = 0, in D′((0, T )× Ω),

and φn(0)→ φ0 in L1(Ω).

Then {φn}∞n=0 converges in C[0, T ;Lp(Ω)], for all 1 ≤ p <∞, to the unique renormal-
ized solution of

∂φ

∂t
+ div(φv) = 0 in D′((0, T )× Ω), φ|t=0 = φ0.

In particular, if β : R→ R is continuous, then {β(φn)} converges to β(φ) in C[0, T ;Lp(Ω)],
1 ≤ p <∞, and β(φ) satisfies

∂β(φ)

∂t
+ div(β(φ)v) = 0 in D′((0, T )× Ω), β(φ)|t=0 = β(φ0),

and
∫

Ω
β(φ(T )) =

∫
Ω
β(φ0).

In Lemma 4.1 below we sketch the proof of a slight generalization of this result to
systems of convection equations coupled through their right hand sides.

4. Existence for Mixtures with Linear Visco-Hyperelastic Particles. In
this section we establish an existence result for the regularized small small strain theory
developed above. We assume that Ω ⊂ Rd is a bounded Lipschitz domain, and begin by
summarizing the equations for linear visco-hyperelastic particles in a Newtonian fluid
medium. Galerkin approximations of the equations∫

Ω

ρ(vt + v.∇v).w + p div(w) + µD(v) ·D(w) +RC(E)RT ·D(w) =

∫
Ω

ρf.w,(4.1)

and

∇.v = 0,
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will be constructed with with initial data v|t=0 = v0 ∈ L2(Ω) satisfying div(v0) = 0;
boundary data v|∂Ω = 0; and non-homogeneous term f ∈ L2[0, T ;L2(Ω)]. The phase
function and strain will be solutions of the equations

φt + v.∇φ = 0,

and
Et + (v.∇)E = RTD(v)R.(4.2)

The density and viscosity are then determined by

ρ = χfρf + χsρs, µ = χfµf + χsµs,

with χf = (1 + φ)/2 and χs = (1− φ)/2.

To compute the rotation matrix fix ε > 0 and let R satisfy

Rt + (v.∇)R = Wε(v)R, R|t=0 = χsR0,(4.3)

where Wε(v) = W (vε) is the mollified spin tensor.

Alternatively, in two dimensions compute

Ωt + v.∇Ω− ε2∆Ω = curl(v), Ω|t=0 = 0, ∂Ω/∂n = 0,(4.4)

and set

R = χs

[
cos(Ω) sin(Ω)
− sin(Ω) cos(Ω)

]
R0.(4.5)

Solutions will be obtained as limits of Galerkin approximations and will satisfy:

v ∈ L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1
0 (Ω)], φ, R ∈ L∞[0, T ;L∞(Ω)], E ∈ L∞[0, T ;L2(Ω)];

div(v) = 0, and a weak form of the momentum equation, namely∫ T

0

∫
Ω

−ρv.wt−(ρv⊗v)·∇w+µD(v)·D(w)+C(E)·RTD(w)R =

∫
Ω

ρ0v0.w(0)+

∫ T

0

∫
Ω

ρf.w,

for all w ∈ D([0, T ) × Ω) with div(w) = 0. The equations for φ, E and R (and, if
applicable, the vorticity Ω) will be satisfied in the usual weak sense.

4.1. Estimates for the Small Strain System. There are two important struc-
tural differences between these equations and the complete system (2.2)-(2.5). While
they both satisfy an energy estimate, the elastic stress in the above system will be in
L2 instead of L1, and, unlike equation (2.5) for the deformation gradient, the equation
for the linearized strain will directly give estimates for E. However, one important
feature is lost; namely the term W (v)R in the equation for R, while very similar to
the corresponding term (∇v)F in the equation for the deformation gradient, does not
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have the div-curl structure; this is what forces the introduction of the regularizations
discussed above.

The derivation of the energy estimate for the system with linearized elastic stress is
obtained by selecting w = v in the weak statement of the momentum equation, taking
the (Frobenius) inner product of the equation for E with C(E), and adding the resulting
equations. As in the original equations, balance of mass and integration by parts enable
the sum of the kinetic and elastic energies to be estimated by

1

2

∫
Ω

(
ρ(T )|v(T )|2 + |E(T )|2

C

)
+

∫ T

0

∫
Ω

µ|D(v)|2(4.6)

=
1

2

∫
Ω

(
ρ0|v0|2 + |E0|2C

)
+

∫ T

0

∫
Ω

ρf.v.

These calculations require some regularity on v; the Galerkin approximation will only
assume this equation to hold for smooth velocities.

As stated above, one of the major differences between the evolution equations for the
deformation gradient F and its linearized counterpart is that the later directly yields
bounds. In particular,

1

2

d

dt

∫
Ω

|E|2 ≤
∫

Ω

|D(v)||E|

so

‖E(T )‖L2(Ω) ≤ ‖E(0)‖L2(Ω) +

∫ T

0

‖D(v)‖L2(Ω).(4.7)

Finally, it is necessary to establish the stability of solutions of the equation for R under
perturbations of the velocity. Given a sequence of velocity fields {vn}∞n=0 converging
weakly in L2[0, T ;H1

0 (Ω)], their spins {W (vn)} will converge weakly in L2[0, T ;L2(Ω)].
If {Wε(vn)} are the mollified spin tensors and Φ ∈ D((0, T ) × Ω), then Wε(vn)Φ will
converge weakly in L2[0, T ;H1

0 (Ω)]; indeed, if Ψ is smooth,∫ T

0

∫
Ω

∇(Wε(vn)Φ) · ∇Ψ =

∫ T

0

∫
Ω

−Wε(vn)Φ ·∆Ψ

=

∫ T

0

∫
Ω

−Wε(vn) · (∆Ψ)ΦT

=

∫ T

0

∫
Ω

−W (vn) · ((∆Ψ)ΦT )ε

→
∫ T

0

∫
Ω

−W (v) · ((∆Ψ)ΦT )ε

=

∫ T

0

∫
Ω

∇(Wε(v)Φ) · ∇Ψ.

In this situation the following lemma shows that the sequence of rotations computed
from {W (vε)} will converge strongly.
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Lemma 4.1. Let {vn}∞n=1 be a sequence of smooth functions that converge weakly in
L2[0, T ;H1

0 (Ω)] and satisfy div(vn) = 0, and let {Wn}∞n=0 be a sequence of smooth skew
matrices bounded in L2[0, T ;L2(Ω)]. Suppose that WnΦ ⇀ WΦ in L2[0, T ;H1

0 (Ω)] for
every smooth test function Φ ∈ D((0, T )× Ω) and that Rn satisfies

Rnt + vn.∇Rn = WnRn, Rn|t=0 = Rn0 ∈ L∞(Ω) ∩ L2(Ω),

where the initial data {Rn0} to R0 converge in L2(Ω). The sequence {Rn} is then
bounded in L∞[0, T ;L∞(Ω)] ∩ L∞[0, T ;L2(Ω)] and converges in L2[0, T ;L2(Ω)] (and
hence all Lp[0, T ;Lp(Ω)], 1 ≤ p <∞) to a weak solution of

Rt + v.∇R = WR, R|t=0 = R0.

Proof. The proof of strong convergence is a mild generalization of the results of DiPerna
and Lions [8]; the major difference is that in the scalar case it is necessary for {Wn} to
be bounded in L∞ while for the coupled system of equations the assumption that W ∈
L2[0, T ;L2(Ω)] and skew suffices. The idea of the proof is quite elementary; however,
one step requires a technical result from [8] or [22] to justify a formal calculation.

The L∞ bound on {Rn} is immediate. Writing the equation as RT
n Ṙn = RT

nWnRn and
adding this to it’s transpose gives

(RT
nRn). = RT

n (Wn +W T
n )Rn = 0, RT

nRn|t=0 = RT
n0Rn0.

Since |R| = trace(RTR) the L∞ bound follows. Similarly, since (|Rn|2/2). = Ṙn ·Rn =
WnRn · Rn = 0 it follows that ‖Rn(t)‖L2(Ω) = ‖Rn0‖L2(Ω), and we explicitly compute

‖Rn‖L2[0,T ;L2(Ω)] =
√
T‖Rn0‖L2(Ω).

The bounds show that we may pass to a subsequence {Rn} which converges weakly in
L2[0, T ;L2(Ω)] to a limit R ∈ L∞[0, T ;L∞(Ω)] ∩ L∞[0, T ;L2(Ω)]. Integration by parts
shows that ∫ T

0

∫
Ω

Rn,t · Φ =

∫ T

0

∫
Ω

WnRn · Φ +Rn · (vn.∇)Φ

for any smooth function, hence {Rn,t} is bounded in L2[0, T ;H−1(Ω)]. The Lions-
Aubin lemma [31] then shows that, upon passing to a subsequence, Rn → R strongly
in C[0, T ;H−1(Ω)]. The hypotheses on the coefficients vn and Wn then suffice to pass
to the limit term by term in the weak statement∫ T

0

∫
Ω

Rn · (Φt + (vn.∇)Φ−WnΦ) =

∫
Ω

Rn0 · Φ|t=0,

so that R is a weak solution of Rt + v.∇R = WR with initial data R0. At this point we
would like to take the dot product of this equation with R to conclude Ṙ · R = 0 and
hence ‖R‖L2[0,T ;L2(Ω)] =

√
T‖R0‖L2(Ω). However, such a computation would be formal

since the weak solutions are not sufficiently smooth to carry out this computation.
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To circumvent this technical problem DiPerna and Lions [8] considered the equation
satisfied by mollifications Rη of R. Rη satisfies

Rηt + v.∇Rη = WRη +O(η),

where O(η) is an error term which, under the regularity hypotheses assumed for v and
W , converges to zero in L1[0, T ;L1(Ω)] + L2[0, T ;L2(Ω)] as η → 0. Taking the inner
product with Rη gives

‖Rη‖L2[0,T ;L2(Ω)] =
√
T‖R0‖L2(Ω) + 2

∫ T

0

∫
Ω

O(η) ·Rη,

and passing to the limit η → 0 (and recalling that R is bounded in L∞ ∩L2) we obtain

‖R‖L2[0,T ;L2(Ω)] =
√
T‖R0‖L2(Ω) = lim

n→∞

√
T‖Rn0‖L2(Ω) = lim

n→∞
‖Rn‖L2[0,T ;L2(Ω)],

so that the weak convergence of {Rn} is actually strong. Notice that the mollification
argument shows that weak solutions are unique since the difference of two weak solutions
is a weak solution with zero initial data. We then conclude that the whole sequence
{Rn} converges strongly to R.

Next, consider the two dimensional situation where R is computed using equation (4.5).
If div(v) = 0, the natural estimate for Ω is

1

2

d

dt

∫
Ω

|Ω|2 + ε2
∫

Ω

|∇Ω|2 =

∫
Ω

ωΩ,

where ω = curl(v) = v2,1 − v1,2 ∈ L2(Ω). A Gronwall argument then shows that

‖Ω(T )‖2
L2(Ω) + 2ε2

∫ T

0

‖∇Ω‖2
L2(Ω) ≤ eT

∫ T

0

‖ω‖2
L2(Ω)(4.8)

(recall that Ω(0) = 0). It follows that a bound upon the velocity in L2[0, T ;H1(Ω)]
gives bounds upon Ω in C[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)]. Since Ωt is bounded in
L2[0, T ;H−1(Ω)], the Lions Aubin lemma [31] shows that the mapping v 7→ Ω is “com-
pletely continuous” (compact) from L2[0, T ;H1(Ω)] into L2[0, T ;L2(Ω)].

4.2. Existence of Solutions. To establish existence of solutions to equations
(4.1)-(4.3) (or (4.5)) we utilize a Galerkin scheme. Let V1 ⊂ V2 ⊂ · · · ⊂ H1

0 (Ω) be a
sequence of finite dimensional spaces of smooth divergence free functions, and let ∪nVn
be dense in V = {v ∈ H1

0 (Ω) | div(v) = 0}. For definiteness let Vn be spanned by a se-
quence {wj}nj=1, where {wj}∞j=1 is a dense set of V . For v ∈ Vn, define (φ(v), R(v), E(v))
to be the solutions of equations (2.1), (4.3), and (4.2) respectively, with coefficients de-
termined by v. Since functions in Vn are smooth, classical solutions of these equations
can be computed using the method of characteristics. It is then possible to construct a
map F : C[0, T, Vn]→ C[0, T, Vn] by defining v = F(v̂) to be the approximate solution

17



of equation (4.1) with coefficients (φ(v̂), R(v̂), E(v̂)) obtained by restricting the solution
and test functions to be in Vn.

The following lemma shows that the mapping F is not only well defined but has a fixed
point. The bounds derived from the energy estimate will then suffice to show that a
subsequence of fixed points, {vn}, converge to a limit satisfying equations (4.1)-(4.3) (or
(4.5)). If the initial data v0 is not smooth, select the initial value for the approximate
problem to be the H1 projection of v0 into Vn.

Lemma 4.2. Let Vn be a finite dimensional space of smooth divergence-fee functions
(div(v) = 0 for v ∈ Vn).

1. The mapping F : C[0, T, Vn] → C[0, T ;Vn], defined above, exists for sufficiently
small times T > 0.

2. For each T > 0, F has a fixed point vn ∈ C[0, T ;Vn], and vn satisfies the energy
estimate (4.6).

Proof. Step 1: For v̂ ∈ Vn, classical techniques can be used to compute the coefficients
(φ(v̂), R(v̂), E(v̂)), and it is clear that their integrals vary continuously with respect
to time. In this situation the Galerkin approximation of equation (4.1) reduces to a
system of first order ordinary differential equations in t where the “right hand side” is
a locally Lipschitz function. Piccard’s theorem then establishes existence of a solution
v for small times. Next, substitute w = v − v0 into equation (4.1) to obtain∫

Ω

ρ̂(|v − v0|2/2)t + (ρ̂v̂).∇(|v − v0|2/2) + µ̂|D(v − v0)|2 + R̂T
C(Ê)R̂ ·D(v − v0)

=

∫
Ω

ρ̂f.(v − v0)− µ̂D(v0) ·D(v − v0),

where we have written φ̂ = φ(v̂) etc. Since ρ̂t +∇.(v̂ρ̂) = 0, it follows that∫
Ω

ρ̂(T )|v(T )− v0|2 ≤ C(‖f‖L2[0,T ;L2(Ω)], ‖v0‖H1(Ω))

∫ T

0

(
1 + ‖v̂‖2

H1(Ω)

)
.

To obtain this estimate we used the fact that φ̂, R̂ ∈ L∞, and hence so too are µ̂ and
ρ̂, and equation (4.7) was used to bound Ê. Since ρ̂ ≥ min(ρf , ρs) > 0, and since all
norms on finite dimensional spaces are equivalent, it follows that

‖v − v0‖2
C[0,T ;Vn] ≤ CnT

(
1 + ‖v̂ − v0‖2

C[0,T ;Vn]

)
,

so if T ≤ 1/2Cn, the function v = F(v̂) maps a ball in C[0, T, Vn] centered at v0 into
itself.

Step 2: In the above we tacitly assumed that v0 was the initial data; however, if
v0 = v(t0) for some 0 ≤ t0 ≤ T , then the above estimate shows that

‖v(t)− v(t0)‖2
Vn ≤ Cn(v0, v̂)|t− t0|,
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and hence v ∈ C[0, T, Vn] is Lipschitz. It then follows from the Arzela-Ascoli theorem
that F is a “completely continuous” (compact) mapping from the unit ball in C[0, T, Vn]
centered at v0 to itself. The Schauder fixed point theorem then establishes the existence
of a fixed point, vn = F(vn).

The energy estimate (4.6) now yields

∫
Ω

(
ρn|vn(T )|2/2 + |En(T )|2

C

)
+

∫ T

0

∫
Ω

µn|D(vn)|2 =

∫
Ω

(
ρ0|v0|2/2 + |E0|2C

)
+

∫ T

0

∫
Ω

ρnf.vn.

It follows that the fixed point vn is uniformly bounded in time, and the above argu-
ment, which guaranteed solutions for short times, can be repeated indefinitely to obtain
existence of a solution in C[0, T ;Vn] satisfying the energy estimates for arbitrarily large
T .

To verify that the sequence of Galerkin approximations converge we will need the fol-
lowing compactness result of J. L. Lions [21]. This theorem was developed by Lions to
establish existence results for incompressible fluids with non-constant density and has
been used frequently in this context [23].

Theorem 4.3 (J. L. Lions). Let Ω ⊂ R
3 be a bounded domain and suppose the

sequence {vn}∞n=1 is bounded in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1
0 (Ω)], and that there exists

C and α > 0 such that, for all 0 ≤ δ < 1,∫ T−δ

0

|vn(t+ δ)− vn(t)|2 ≤ Cδα, n = 1, 2, . . . .

Then the sequence is relatively compact in Lp[0, T ;Lq(Ω)] for any pair (p, q) satisfying
2/p+ 3/q > 3/2.

This theorem follows from a classical result of Frechet and Kolmogorov, see [29, page
50], which is a variant of the Arzela-Ascoli theorem applicable to Lp(Ω) spaces.

Theorem 4.4. Equations (4.1)-(4.3) (or (4.5)) with the assumptions on the boundary
and initial data stated at the beginning of this section have a weak solution satisfying
the energy estimate (4.6) (with inequality).

Proof. Let {vn, φn, En, Rn}∞n=0 be the Galerkin approximations constructed in the
lemma. The lower bound ρn ≥ min(ρf , ρs) and the energy estimate directly yield
bounds upon vn in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)], and by construction div(vn) = 0.
The hypotheses of Theorem 3.1 are then satisfied by the sequence {(vn, φn)} and, upon
passing to a subsequence, we conclude that there exists φ ∈ L∞[0, T ;L∞(Ω)] such that
φn → φ in C[0, T ;Lp(Ω)] for all 1 ≤ p <∞. Since ρn, µn etc. are all affine functions of
φn these quantities converge similarly.

We utilize the technique of J. L. Lions [21] to establish strong convergence of the
velocities in L2[0, T ;L2(Ω)]. The densities {ρn} each satisfy equation (2.2), so if 0 ≤
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δ < 1 and ψ ∈ H1
0 (Ω) it follows that∫

Ω

(ρn(t+ δ)− ρn(t))ψ =

∫ t+δ

t

∫
Ω

ρnvn.∇ψ.

Putting ψ = vn(t).w into this equation gives∫
Ω

(
ρn(t+ δ)− ρ(t)

)
vn(t).w =

∫ t+δ

t

∫
Ω

ρn(s)vn(s).∇(vn(t).w) ds.

Next, if w ∈ Vn, equation (4.1) and equation (2.2) may be combined to yield∫
Ω

(
ρn(t+ δ)vn(t+ δ)− ρn(t)vn(t)

)
.w

=

∫ t+δ

t

∫
Ω

(ρvn ⊗ vn) · ∇w − µD(vn) ·D(w)−RC(En)RT ·D(w).

Subtracting the previous two equations gives∫
Ω

ρn(t+ δ)
(
vn(t+ δ)− vn(t)

)
.w

=

∫ t+δ

t

∫
Ω

(ρvn ⊗ vn) · ∇w − µD(vn) ·D(w)−RC(En)RT ·D(w)− ρnvn.∇(vn(t).w),

where we have suppressed the variable of integration on the right.

Recalling that R ∈ L∞ and C : Rd×d → R
d×d is a bounded linear map, it follows that∣∣∣∣∫

Ω

ρn(t+ δ)
(
vn(t+ δ)− vn(t)

)
.w

∣∣∣∣ ≤ ∫ t+δ

t

‖vn‖L4(Ω)‖∇vn(t)‖L2(Ω)‖w‖L4(Ω)+

C

∫ t+δ

t

(
‖vn‖2

L4(Ω) + ‖D(vn)‖L2(Ω) + ‖En‖L2(Ω) + ‖vn‖L4(Ω)‖vn(t)‖L4(Ω)

)
‖∇w‖L2(Ω).

The Sobolev embedding theorem states that ‖v‖L4(Ω) ≤ C‖v‖1−α
L2(Ω)‖v‖

α
H1(Ω) where α =

1/2 in two dimensions and α = 3/4 in three dimensions. Since vn is bounded in
L∞[0, T ;L2(Ω)], the bounds from the energy estimate and the bound (4.7) show that
the integrands on the right are in L1/α, then∣∣∣∣∫

Ω

ρn(t+ δ)
(
vn(t+ δ)− vn(t)

)
.w

∣∣∣∣
≤ C

(
‖∇vn(t)‖L2(Ω)‖w‖L4(Ω) + (1 + ‖vn(t)‖L4(Ω))‖∇w‖L2(Ω)

)
δ1−α

≤ C
(
‖∇vn(t)‖L2(Ω)‖w‖L4(Ω) + ‖∇w‖L2(Ω) + ‖∇vn(t)‖αL2(Ω)‖∇w‖L2(Ω)

)
δ1−α.

Finally, put w = vn(t + δ) − vn(t) and verify that the right hand side is integrable to
obtain

min(ρf , ρs)

∫ T−δ

0

‖vn(t+ δ)− vn(t)‖L2(Ω) ≤
∫ T−δ

0

∫
Ω

ρn(t+δ)|vn(t+δ)−vn(t)|2 ≤ Cδ1−α.
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This verifies the final hypothesis of Theorem 4.3, so we conclude that {vn} is relatively
compact in L2[0, T ;L2(Ω)], and may pass to a subsequence for which vn → v strongly
in L2[0, T ;L2(Ω)].

The bounds upon vn provided by the energy estimate and the strong convergence of (a
subsequence of) {vn} establish the hypotheses for Lemma (4.1), so that the subsequence
{Rn} of (regularized) rotations converge strongly in Lp[0, T ;Lp(Ω)], 1 ≤ p <∞. In two
dimensions the strong convergence of the sequence Ωn and the identity (3.1) lead to the
same conclusion. Finally, since En is bounded in L∞[0, T ;L2(Ω)] is is possible to pass
to a subsequence which converges weakly star in this space.

We are now in a position to show that the limit (v, φ, E,R) of a subsequence of Galerkin
approximations is a weak solution of equations (4.1)-(4.3) (or (4.5)). Let w ∈ D([0, T )×
Ω) satisfy div(w) = 0, then by density there exists a sub-sequence {ŵn}∞n=0 with ŵn ∈
C1[0, T ;Vn] such that ŵn → w in C1[0, T ;W 1,q(Ω)] for q ≥ 1. Since it is possible to
select ŵn(T ) = 0, each Galerkin approximation satisfies∫ T

0

∫
Ω

−ρnvn.ŵnt − (ρnvn ⊗ vn) · ∇ŵn + µnD(vn) ·D(ŵn) + C(En) ·RT
nD(ŵn)Rn

=

∫
Ω

ρn(0)vn(0).ŵn(0) +

∫ T

0

∫
Ω

ρnf.ŵ.

The first two terms in this equation are the product of functions which converge in
Lp[0, T ;Lp(Ω)], p > 1, and gradients of the test function which converges strongly in
Lp
′
[0, T ;Lp

′
(Ω)]. It follows that these terms converge strongly and hence pass to their

natural limits. This argument also shows that the terms µnD(ŵn) and RT
nD(ŵn)Rn

converge strongly in L2[0, T ;L2(Ω)], and since D(vn) and En converge weakly it is
again possible to pass to the limit. It follows that∫ T

0

∫
Ω

−ρv.wt−ρ(v⊗v)·∇w+µD(v)·D(w)+C(E)·RTD(w)R =

∫
Ω

ρ0v0.w(0)+

∫ T

0

∫
Ω

ρf.w

for all w ∈ D([0, T ) × Ω) satisfying div(w) = 0. This line of argument is equally
applicable to weak statements of equations (4.2) and equation (4.3) (or (4.4)) and
shows that they are satisfied by the limits E and R (and Ω).

REFERENCES

[1] L. Anand and M. Kothari, A computations procedure for rate independent cyrstal placticity,
J. Mech. Phys. Solids, 4 (1996), pp. 525–558.

[2] R. J. Asaro, Crystal placticity, J. of Applied Mechancis, 50 (1983), pp. 921–934.

[3] G. Caginalp, An analysis of a phase field model of a free boundary, Archive for Rational Me-
chanics and Analysis, 92 (1986), pp. 205–245.

21



[4] , Stefan and Hele–Shaw type models a asymptotic limits of phase field equations, Physics
Review A, 39 (1989), pp. 887–896.

[5] Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher, A level set formulation of Eulerian
interface capturing methods for incompressible fluid flows., J. Comput. Phys., 124 (1996),
pp. 449–464.

[6] E. DeGiorgi, Some conjectures on flow by mean curvature, in Methods of Real analysis and
Partial Differential Equations, M. L. Benevento, T. Bruno, and C. Sbordone, eds., Liguori,
Napoli, 1990.

[7] S. Demoulini, Weak solutions for a class of nonlinear systems of viscoelasticity, Archive for
Rational Mechanics and Analysis, Submitted (2000).

[8] R. J. DiPerna and P. L. Lions, Ordinary differential equations, transport theory and Sobolev
spaces, Inventiones Mathematicae, 98 (1989), pp. 511–547.

[9] G. Fix, Phase field methods for free boundary problems, in Free Boundary Problems, B. Fasano
and M. Primicerio, eds., Pitman, London, 1983, pp. 580–589.

[10] E. Freid and M. E. Gurtin, Continuum theory of thermally induced phase transitions based
on an order parameter, Physica D, 68 (1993), pp. 326–343.

[11] J. Glimm, J. Grove, , B. Plohr, D. Sharp, and F. Wang, A conservative Eulerian nu-
merical scheme for elastoplasticity and application to plate impact problems, Impact Comput.
Sci. Engrg., 5 (1993), pp. 285–308.

[12] R. Glowinski, T. Pan, T. Hesla, D. Joseph, and J. Periaux, A distributed Lagrange
multiplier/fictitious domain method for the simulation of flow around moving rigid bodies:
application to particulate flow, Comput. Methods Appl. Mech. Engrg., 184 (2000), pp. 241–
267.

[13] M. E. Gurtin, Linear Theories of Elasticity and Thermoelasticity, no. II in Mechanics of Solids,
Springer-Verlag, 1973.

[14] , An introduction to Continuum Mechanics, no. 158 in Mathematics in Science and Engi-
neering, Academic Press, 1981.
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