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Which Rectangular Chessboards 
Have a Knight's Tour? 

ALLEN J. SCHWENK* 
Western Michigan University 

Kalamazoo, Ml 49008 

Problems involving the search for Hamiltonian cycles are popular in undergraduate 
discrete mathematics courses. A few textbooks introduce the intriguing puzzle of 
searching for spanning tours by a knight on various rectangular chessboards. This area 
provides a down-to-earth collection of problems that illustrates the idea of a Hamilto- 
nian cycle. The problems are challenging enough to require thoughtful solutions, and 
yet, at least for small boards, manageable enough so that students can succeed in 
finding tours on some boards and in showing that they are impossible on others. It 
also gives the instructor a chance to prove the nonexistence of tours on an infinite 
family of boards by an elegant (though well-known) parity argument. Certainly any 
curious student must wonder precisely which size boards do admit knight's tours and 
which do not. Chartrand [2] ignores this natural question, while Wilson and Watkins 
[7] report that the question was fully resolved by Euler in 1759 and 12 years later 
(independently) by Vandermonde. Similarly, Berge [1] introduces the problem, men- 
tions some of the history, and then immediately drops it. Dudeney [3] also provides a 
sketchy history. Rouse Ball and Coxeter [6] provide a 10-page treatment of the 
problem without ever mentioning which size boards can in fact be toured. A recent 
research article by Eggleton and Eid [4] focuses on "open" tours for which the knight 
need not return to his starting square. They even extend the problem to infinite 
boards of various types, leading to intriguing questions about the existence of 
spanning one-way and two-way infinite paths. But their discussion of the original 
knight's tour problem only goes into detail on the well-known odd order case and on 
the family of 3 X n boards where they report a private communication claiming 
(erroneously) that Hamiltonian cycles exist if and only if n > 8 and n is even. We 
shall show that the correct version is n > 10 and n is even. The universal avoidance 
of reporting the definitive solution creates the impression that it must be beyond the 
undergraduate level. Presumably, it is difficult to describe the sizes that admit a tour, 
harder still to actually construct these tours, and heaven knows what it takes to show 
that all other sizes really are impossible. The 200-year-old references to the literature 
are incomplete and intimidating. I don't know how to find these ancient volumes. My 
students wouldn't even consider trying. 

The purpose of this article is to show that the full solution of the knight's tour 
problem is quite brief and entirely accessible to beginning students. In the process, 
the student will see a new use of parity to show impossibility in one case and a rather 
unusual instance of proof by induction that requires nine specific cases in order to 
anchor the induction. 

We begin with a careful definition of the problem. An m X n chessboard is an array 
with square cells arranged in m rows and n columns. The standard chessboard is 
8 X 8. For convenience we shall assume m < n. We label the cells (i, j) counting 
from the upper left corner in matrix fashion. Now a legal knight move is the result of 
moving two cells horizontally or vertically and then turning and moving one cell in 
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the perpendicular direction. Thus, if we start at cell (i, j) we can complete the move 
on one of eight cells: (i + 2, j ? 1) or (i ? 1, j ? 2). Of course if we are too close to 
the border of the board some of these choices may not exist. The knight's tour 
question is usually posed in this form: 

Problem. On which m X n boards can a knight make successive legal knight moves, 
visit every cell exactly once, and conclude by returning to its starting cell? 

There is also a version of the problem seeking "open tours" where the knight is not 
required to return to his starting position. The open tour problem can be solved by 
the same methods as the more common "closed tour" problem; we shall leave it as a 
challenge for the interested reader. The first step is to convert the problem to a 
question about certain graphs. We define a graph G(m, n) on mn vertices by 
replacing each cell of the board by a vertex and then joining two vertices by an edge 
if they are separated by a knight's move. This is illustrated for a 3 x 6 board in 
FIGURE 1. A knight can tour the m X n board if and only if there exists a cycle 
containing all the vertices in the resulting graph. Such a cycle is called a Hamiltonian 
cycle, named after William R. Hamilton who marketed a puzzle called A Voyage 
Round the World based on this concept in 1859. Accounts of Hamilton's puzzle can 
be found in [2, 6, 7]. The customary alternating white and black coloring of the 
chessboard is preserved in the white and black vertices of the graph. We set vertex 
(i,j) to be white if i +j is even and black if i +j is odd. It is easy to see that every 
edge in the graph joins vertices of opposite colors. Such a graph is called bipartite, or 
for brevity, a bigraph. Since the colors must alternate in any cycle, the cycle must 
have an even number of vertices. We have just proved one of the first theorems on 
bipartite graphs, namely, all cycles must be even. 

FIGURE 1 
Conversion of the 3 x 6 chessboard into the graph G(3, 6). 

We can now state the conditions that determine which chessboards have a knight's 
tour. 

THEOREM. An m X n chessboard with m < n has a knight's tour unless one or more 
of these three conditions holds: 

(a) m and n are both odd; 
(b) m = 1, 2, or 4; or 
(c) m = 3 and n = 4, 6, or 8. 

Proof. We begin by showing why conditions (a), (b), and (c) must be excluded. 
Then we shall show how to construct a tour on every other board. 

When m and n are both odd, so is the order, mn, of our graph. But we have 
already observed that every cycle must be even, and so no Hamiltonian cycle can 
exist. 

For m = 1 or 2, it is clear that the board is not wide enough to permit a tour. 
Indeed, cell (1, 1) doesn't even have two available edges to be used in the cycle. For 
m = 4, the impossibility is more subtle. We present here the proof discovered by 
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Louis Posa as a teenager and reported in the classic book of Ross Honsberger [5]. 
Assume that we have found a Hamiltonian cycle v1v2 ... v4nv1. Let us recolor the 
vertices red and blue, with every vertex in rows 1 and 4 red and every vertex in rows 
2 and 3 blue. This coloring no longer serves as the bipartition for the graph since 
some blue vertices are adjacent to other blue vertices, for example, (2, 1) and (3,3). 
However, every red vertex is adjacent only to blue vertices. Thus, in a presumed 
Hamiltonian cycle, the red vertices must always be separated by blue vertices. Since 
we have 2n vertices of each color, the red and blue vertices must alternate around 
the cycle. Now starting at v1 = (1, 1), we can conclude that all the vertices in odd 
positions on the cycle, V2k +1, are red. But from the original black and white coloring 
we can conclude equally well that all the vertices V2k +1 are also white. Thus all red 
vertices are white vertices, but this contradicts the different pattern chosen for the 
two colorings. We conclude that no Hamiltonian cycle is possible. 

To analyze condition (c) we introduce certain graphical concepts. The 3 X 4 board 
has already been excluded in the preceding paragraph. When we remove a vertex v 
from a graph G we also remove all edges incident with v. For any G having a 
Hamiltonian cycle, it is clear that removing any set of k vertices can leave at most k 
connected components. Since removing vertices (1,3) and (3,3) from G(3, 6) leaves 
three components, we must conclude that no Hamiltonian cycle exists for the 3 X 6 
board. Now it happens that in G(3, 8) vertices (1, 1), (2, 1), (3, 1), (2,2), (1,8), (2,8), 
(3,8), and (2,7) all have degree two, forcing us to include in a presumed Hamiltonian 
cycle the 16 edges shown in FIGURE 2. These edges form six paths that must lie 
within the Hamiltonian cycle. We also consider the two vertices missed by all six 
paths, namely (2,4) and (2, 5) as trivial paths. We define a new graph G*(3, 8) derived 
from these eight paths by letting one new vertex stand for each of these eight paths 
and joining two of these new vertices i and j whenever there is an edge in G(3, 8) 
joining an end of path i to an end of path j. Now a Hamiltonian cycle in the original 
G(3,8) must force a corresponding Hamiltonian cycle to be present in G*(3,8), 
although the converse need not be true. But G*(3,8) has two vertices of degree three 
whose removal leaves three components. Therefore, neither G*(3, 8) nor G(3, 8) can 
have a Hamiltonian cycle. 

' ~~r 
FIGURE 2 

Sixteen edges that must belong to any Hamiltonian cycle of G(3, 8) and the resulting 
derived graph G*(3, 8). 

This completes the list of excluded sizes. Every other board has a Hamiltonian 
cycle, but how can we hope to construct all the necessary tours? The key is to develop 
a method that allows us to build new tours from smaller tours. In the following lemma 
it is convenient to dispense with the convention that m < n. This lemma allows us to 
add 4 columns to a successful tour, provided 10 particular edges belong to the tour. 
Actually, our extension methods may require one, two, or four particular edges to be 
present. The union of these sets gives five prescribed edges. But in order to be free to 
extend by either four columns or four rows, we require the presence of 10 specified 
edges. 
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LEMMA. If G(m, n) has a Hamiltonian cycle that includes the 10 edges 

(1, n -1)-(3, n) (m - 2, n - I)-(m, n) (m - 1, l)-(m, 3) (m - 1, n - 2)-(m, n) 
(4, n - 1)-(2, n) (1, n)-(3, n - 1) (m - 2, n)-(m, n - 1) (m, )-(m - 1, 3) 

(m, n - 2)-(m - 1, n) (m, 2)-(m - 1, 4), 

then G(m, n + 4) also has a Hamiltonian cycle including the corresponding 10 edges 

(1,n + 3)-(3,n + 4) (m-2,n + 3)-(m,n + 4) (m- 1,1)-(m,3) 
(m-1, n + 2)-(m, n + 4) (4, n + 3)-(2, n + 4) (1, n + 4)-(3, n + 3) 
(m-2, n + 4)-(m, n + 3) (m, 1)-(m- 1, 3) (m, n + 2)-(m-1, n + 4) 

(m,2)-(m - 1,4). 

Proof. The 10 required edges are displayed visually in FIGURE 3. For m = 3, these 
"10 edges" degenerate into a set of seven. For all values of m and n, four of 
the 10 required edges (specifically the edges (1, n)-(3, n - 1), (m, 1)-(m - 1,3), 
(m - 2, n - 1)-(m, n), and (m - 1, n - 2)-(m, n) that all lead into corner cells) are 
already forced to obtain any Hamiltonian cycle. Thus, the additional hypothesis 
needed to facilitate the induction is not as restrictive as it may at first appear. To add 
four columns to any Hamiltonian cycle in G(3, n) that contains the critical seven 
edges, we place a certain 3 X 4 array with a spanning path along side G(3, n), delete 
edge (1, n - 1)-(3, n) from the cycle, and insert edges (1, n - 1)-(2, n + 1) and 
(3, n)-(1, n + 1) in order to incorporate the path into the cycle. FIGURE 4 shows the 
extension of a Hamiltonian cycle in G(3, 10) to one in G(3, 14) to illustrate this 
construction. The new Hamiltonian cycle also contains the prescribed seven edges, so 
it too can be used for further extensions. 

* 0 

* 0 

* 0 

FIGURE 3 
The ten edges required for the proposed induction. 

For m > 5, we use an m X 4 array H(m, 4) that is obtained from G(m, 4) by 
deleting all edges joining column two to column three and all edges joining vertices 
two columns apart except those joining vertices in rows 1 and 2 and those joining 
vertices in rows m - 1 and m. The remaining graph H(m, 4) is regular of degree 2, 
that is, every vertex has degree 2. Its edges form cycles that wrap around the board 
hugging the outside border as closely as possible, but it is not a single cycle. It is easy 
to see that H(m, 4) has a pair of 2m-cycles when m is odd and four m-cycles when m 
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FIGURE 4 
Extension of a Hamiltonian cycle in G(3, n) to one in G(3, n + 4) for n = 10. 

is even. Since this fact is critical for the construction we are developing, we shall 
prove it by induction. 

FIGURE 5 displays one of the cycles in H(5, 4). Its mate is formed by the reflection 
about the vertical axis through the center of the board. The additional two rows of 
vertices at the bottom suggest how the cycle shown is extended in H(7, 4). Specifi- 
cally, we delete edges (5,1)-(4,3) and (5,2)-(4,4) and insert edges (5,1)-(7,2), 
(7, 2)-(6, 4), (6, 4)-(4, 3), (5, 2)-(7, 1), (7, 1)-(6, 3), and (6, 3)-(4, 4). Repeating this 
extension displays the paired-cycle structure in H(m, 4) whenever m is odd. 

Similarly, FIGURE 6 displays two of the four cycles in H(6, 4). The other two mates 
are found by using a vertical reflection. Analogous to the odd case, we extend the 
cycles shown by deleting edges (6,1)-(5,3) and (6,2)-(5,4) and inserting edges 
(6, 1)-(8, 2), (8, 2)-(7, 4), (7, 4)-(5, 3), (6, 2)-(8, 1), (8, 1)-(7, 3), and (7, 3)-(5, 4). Re- 
peating this extension displays the four cycle structure in H(m, 4) whenever m is 
even. 

0 0 

0 

0 0 

@0I% 

0.C 
. ,* 

o 

0 0 O 

FIGURE 5 
One of the cycles in H(5, 4) and its extension 
to H(7, 4). 

@0 

0 

@0 

00 

00u 

*. o* .::,o 

FIGURE 6 
Two of the cycles in H(6, 4) and its extension 
to H(8, 4). 

To extend a Hamiltonian cycle in G(m, n) with m odd to one G(m, n + 4), we 
place H(m, 4) along side of G(m, n) as shown in FIGURE 7. We remove two edges 
(1, n)-(3, n - 1) and (2, n)-(4, n - 1) from the Hamiltonian cycle, and two edges 
(1, n + 2)-(3, n + 1) and (2, n + 2)-(4, n + 1) from H(m, 4), and then insert four 
edges (1, n)-(2, n + 2), (2, n)-(1, n + 2), (3, n - 1)-(4, n + 1), and (4, n - 1)-(3, n + 
1). This has the effect of incorporating the two cycles of H(m, 4) into the given 
Hamiltonian cycle to create a new Hamiltonian cycle in G(m, n + 4). The new cycle 
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contains the prescribed 10 edges. The extension of G(5, 6) to G(5, 10) is illustrated in 
FIGURE 7. 

FIGURE 7 
Extension of a Hamiltonian cycle in G(5, n) to 
one in G(5, n + 4) for n = 6. 

Similarly, for m even as in FIGURE 8, we can incorporate H(m, 4) into a Hamilto- 
nian cycle of G(m, n) by first removing the four edges 

(1, n-1)-(3, n), (1, n)-(3, n-1), (m -2, n-l)-(m, n), and 

(m-2, n)-(m, n- 1) 

from the Hamiltonian cycle, then removing the four edges 

(2,n+1)-(4,n+2),(2,n+2)-(4,n+1),(m-3,n+l)-(m-1,n+2), and 

(m-3,n+2)-(m-l,n+ 1) 

from H(m, 4), and finally inserting the eight edges 

(1, n- 1)-(2, n + 1), (1, n)-(2, n + 2), (3, n- 1)-(4, n + 1), (3, n)-(4, n + 2), 
(m -2, n - l)-(m -3, n + 1), (m -2, n)-(m -3, n + 2), 

(m,n-1)-(m-1,n+ 1), and (m,n)-(m-1,n+2). 

Again, the new cycle contains the prescribed 10 edges. The extension of G(6, 6) to 
G(6, 10) is illustrated in FIGURE 8. This completes the proof of the lemma. 

FIGURE 8 
Extension of a Hamiltonian cycle in G(6, n) 
to one in G(6, n + 4) for n = 6. 
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But now we must complete the proof of the theorem. The lemma can be used to 
add four columns or four rows to a known solution. Thus, we can construct solutions 
for G(m, n) provided we have a collection of starting cases for each possible modulo 
class pair [i, j] where both i and j are taken modulo 4. Thus, it might seem that we 
would need 16 instances to serve as the base of our construction. But by flipping a 
rectangle over about its main diagonal we can interchange i and j, reducing the 
count to 10 instances. Moreover, recall that condition (a) forbids odd ordered boards, 
excluding classes [1, 1], [1,3], and [3,3]. This leaves just seven classes. Considering 
the forbidden values of m = 1, 2, and 4, the smallest possible members of these seven 
classes are 3 X 6, 3 X8, 5 x 6, 5 x 8, 6 X 6, 6 X 8, and 8x 8. But condition (c) 
excludes size 3 x 6. To replace it and be able to generate all other orders in the same 
class, we must include both 3 X 10 and 7 X 6. Similarly, the impossible order 3 x 8 
forces us to include both 3 X 12 and 7 X 8. Thus, there are nine specific instances 
whose Hamiltonian cycles must be constructed individually before the lemma can be 
used to finish the job by induction. I have no particular method for generating these 
nine solutions, but whenever possible I have tried to select solutions that have 
pleasing symmetry or near symmetry. All nine are collected in FIGURE 9. I couldn't 
resist the urge to seek the most compact arrangement of the nine solutions into a 
single drawing. 

5 x 6 8 x 8 

7 x~ 62 x 3 

8 x 6 

FIGURE 9 
The nine Hamiltonian cycles that form the base of the inductive construction. 
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I like this illustration that induction can require many cases in order to get started 
because it shows students that they must be flexible when designing a proof by 
induction. I find this complete solution satisfying because the three conditions in the 
theorem are so easy to state, the impossible sizes are easy to understand, and while 
the inductive construction requires a bit of detail, the method remains totally 
elementary. Not everyone may wish to take class time to go through the complete 
solution, but students should be told that the full solution is entirely within their 
grasp. 

Acknowledgement. The author is grateful to the referees for the detailed comments that greatly 
improved this article. 
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Steiner Minimal Trees on Chinese Checkerboards 

F. K. HWANG 
AT&T Bell Laboratories 
Murray Hill, NJ 07974 

D. Z. DU 
Academia Sinica 
Beijing, China 100010 

1. Introduction For a given set P of points in the plane, S(P), a Steiner minimal 
tree (SMT) is the shortest network spanning P. Recently, Chung, Gardner, and 
Graham [1] studied the SMT problem on an n X n square lattice that they called a 
checkerboard. They gave a general construction of heuristic SMTs on checkerboards 
and conjectured that the constructed trees are minimal for certain values of n. While 
the checkerboard is in the shape of a square, the Chinese checkerboard is in the 
shape of a Star of David triangulated into equilateral triangles of the same size (see 
FIGURE 1). 

Formally, for n 2 2 we define a latticed hexagon (triangle) to be a regular hexagon 
(equilateral triangle) divided into disjoint equilateral triangles by lines parallel to the 
sides of the hexagon (triangle). The hexagon (triangle) is said to be of order n if there 
are n lattice points on each side. Let Hn(Tn) be the set of lattice points of the 
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