
EDGE-COLORING CLIQUES WITH

THREE COLORS ON ALL 4-CLIQUES

Dhruv Mubayi

February 27, 1998

Abstract. A coloring of the edges of Kn is constructed such that every copy of

K4 has at least three colors on its edges. As n → ∞, the number of colors used is

eO(
√

log n ). This improves upon the previous probabilistic bound of O(
√

n ) due to
Erdős and Gyárfás.

1. The Problem

The classical Ramsey problem asks for the minimum n such that every k-coloring
of the edges of Kn yields a monochromatic Kp. For each n below this threshold,
there is a k-coloring such that every p-clique receives at least 2 colors. Since the
thresholds are unknown, we may study the problem by fixing n and asking for the
minimum k such that E(Kn) can be k-colored with each p-clique receiving at least
2 colors. This generalizes naturally as follows.

Definition. For integers n, p, q, a (p, q)-coloring of Kn is a coloring of the edges
of Kn in which the edges of every p-clique together receive at least q colors. Let
f(n, p, q) denote the minimum number of colors in a (p, q)-coloring of Kn.

The function f(n, p, q) was first studied by Elekes, Erdős and Füredi (as described
in Section 9 of [1]). Erdős and Gyárfás [2] later improved the results, using the
Local Lemma to prove an upper bound of O(ncp,q ), where cp,q = p−2

(p
2)−q+1

. In

addition they determined for each p the smallest q such that f(n, p, q) is linear
in n and the smallest q such that f(n, p, q) is quadratic in n. Many small cases
remain unresolved, most notably the determination of f(n, 4, 3). Indeed, the Local
Lemma shows only that f(n, 4, 3) = O(

√
n ), but it remains open even whether

f(n, 4, 3)/ log n →∞.
In this note we show that the optimal (4,3)-coloring of Kn uses many fewer

colors than the random (4,3)-coloring. We do this by explicitly constructing a (4,3)
coloring of Kn. Our main theorem is the following:

Theorem. f(n, 4, 3) < e
√

c log n (1+o(1)), where c = 4 log 2.
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2. The Coloring

In this section we describe the coloring of E(Kn).
We write [n] for {1, 2, . . . , n}. The symmetric difference of sets A and B is

A4B = (A − B) ∪ (B − A). For integers t < m, let
(
[m]
t

)
denote the family of all

t-subsets of [m].
Let G be the complete graph on

(
m
t

)
vertices. Let V (G) =

(
[m]
t

)
, and for each

t-set T of [m], rank the 2t − 1 proper subsets of T according to some linear order.
Color the edge AB with the two dimensional vector

c(AB) = (c0(AB), c1(AB))

where
c0(AB) = min{i : i ∈ A4B}.

Set

S =
{

A if c0(AB) ∈ A

B if c0(AB) ∈ B.

Let c1(AB) be the rank of A ∩ B in the linear order associated with the proper
subsets of S.

In this construction, the number of colors used is at most (2t − 1)(m− 1).
Remark: This construction is valid even if we let the vertex set consist of

all subsets of [m] of size at most t, but the gain in the number of vertices is
asymptotically negligible.

3. The Proof

We now check that our coloring is a (4,3) coloring of Kn. First observe that
there are no monochromatic triangles. Indeed, if ABC is one such triangle, and
c0(AB) = i ∈ A, then, since c(AB) = c(BC) certainly implies that c0(AB) =
c0(BC), we have i ∈ C. But now i 6∈ A4C, so c(AC) 6= c(AB).

Since monochromatic triangles are forbidden, the only types of 2-colored K4’s
that can occur are those in Figure 1.

Fig. 1: The 2-colored K4’s

Type 1: Here one color class is the path ABCD, while the other is the path
BDAC. Suppose c0(AB) = i.

Case 1: i ∈ A. Then i ∈ C and i 6∈ B,D. Moreover,

A ∩ [i− 1] = B ∩ [i− 1] = C ∩ [i− 1] = D ∩ [i− 1]
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because i is the smallest element in A4B and c(AB) = c(BC) = c(CD). This
implies that c0(AC) > i = c0(AD). Thus c(AC) 6= c(AD).

Case 2: i ∈ B. Then i ∈ D and i 6∈ A,C. Reversing the labels on the path
ABCD now puts us back in Case 1.

Type 2: Here one color class is the 4-cycle ABCD, while the other contains the
edges AC and BD. By symmetry we may assume that c0(AB) ∈ A−B; and hence
also c0(AB) ∈ C −D. Thus c0(AD) = c0(AB) ∈ (A∩C)− (B ∪D), which implies
that

1) c1(AB) is the rank of A ∩B in A, and
2) c1(AD) is the rank of A ∩D in A.
Since the rank of a subset in a set identifies the subset, we have A∩B = A∩D.

Interchanging the roles of A and C, we obtain C ∩B = C ∩D.
Because c(AC) = c(BD), we may assume that c0(AC) = c0(BD) = i. Thus

either i ∈ (A∩B)− (C ∪D), or i ∈ (A∩D)− (C ∪B), or i ∈ (C ∩B)− (A∪D), or
i ∈ (C ∩D)− (A ∪B). Each of these four cases contradicts either A ∩B = A ∩D
or C ∩B = C ∩D.

Proof of Theorem. Set t =
⌈√

log n/
√

log 2
⌉

and choose m such that
(
m
t

)
< n ≤(

m+1
t

)
. Since f is a nondecreasing function of n and (m/t)t <

(
m
t

)
for t < m, we

have

f(n, 4, 3) ≤ f

((
m + 1

t

)
, 4, 3

)
≤ (2t − 1)m

< 2tt n1/t

= (1 + o(1)) e2
√

log 2 log n+ log log n−log log 2
2

= e
√

4 log 2 log n (1+o(1)). �
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