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ABSTRACT. A coloring of the edges of K, is constructed such that every copy of
K4 has at least three colors on its edges. As n — oo, the number of colors used is

e©9(W1ogn ) This improves upon the previous probabilistic bound of O(y/n ) due to
Erdds and Gyéarfas.

1. THE PROBLEM

The classical Ramsey problem asks for the minimum n such that every k-coloring
of the edges of K, yields a monochromatic K,. For each n below this threshold,
there is a k-coloring such that every p-clique receives at least 2 colors. Since the
thresholds are unknown, we may study the problem by fixing n and asking for the
minimum & such that F(K,,) can be k-colored with each p-clique receiving at least
2 colors. This generalizes naturally as follows.

Definition. For integers n,p,q, a (p,q)-coloring of K,, is a coloring of the edges
of K, in which the edges of every p-clique together receive at least ¢ colors. Let
f(n,p,q) denote the minimum number of colors in a (p, ¢)-coloring of K,,.

The function f(n,p, q) was first studied by Elekes, Erd6s and Fiiredi (as described
in Section 9 of [1]). Erdés and Gyarfas [2] later improved the results, using the

Local Lemma to prove an upper bound of O(n‘), where ¢,, = ﬁ. In
P

addition they determined for each p the smallest ¢ such that f(n,p,q) is linear
in n and the smallest ¢ such that f(n,p,q) is quadratic in n. Many small cases
remain unresolved, most notably the determination of f(n,4,3). Indeed, the Local
Lemma shows only that f(n,4,3) = O(y/n ), but it remains open even whether
f(n,4,3)/logn — oo.

In this note we show that the optimal (4,3)-coloring of K, uses many fewer
colors than the random (4,3)-coloring. We do this by explicitly constructing a (4,3)
coloring of K,,. Our main theorem is the following:

Theorem. f(n,4,3) < evelosn (1+e(D) " where ¢ = 4log 2.
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2. THE COLORING

In this section we describe the coloring of E(K,,).

We write [n] for {1,2,...,n}. The symmetric difference of sets A and B is
AnB = (A — B) U (B — A). For integers t < m, let ([T]) denote the family of all
t-subsets of [m].

Let G be the complete graph on (T) vertices. Let V(G) = ([T]), and for each
t-set T of [m], rank the 2! — 1 proper subsets of T according to some linear order.

Color the edge AB with the two dimensional vector
¢(AB) = (¢o(AB),c1(AB))

where
co(AB) = min{i : i € AaB}.
Set
B { A ifeg(AB) € A
| B if¢(AB) € B.

Let ¢1(AB) be the rank of AN B in the linear order associated with the proper
subsets of S.
In this construction, the number of colors used is at most (2 — 1)(m — 1).
Remark: This construction is valid even if we let the vertex set consist of
all subsets of [m] of size at most ¢, but the gain in the number of vertices is
asymptotically negligible.

3. THE PROOF

We now check that our coloring is a (4,3) coloring of K,,. First observe that
there are no monochromatic triangles. Indeed, if ABC is one such triangle, and
co(AB) = i € A, then, since ¢(AB) = ¢(BC) certainly implies that c¢o(AB) =
co(BC), we have i € C. But now i € ArC, so ¢(AC) # c¢(AB).

Since monochromatic triangles are forbidden, the only types of 2-colored Kj,’s
that can occur are those in Figure 1.

Fig. 1: The 2-colored Ky’s

Type 1: Here one color class is the path ABC' D, while the other is the path
BDAC. Suppose c¢o(AB) = i.
Case 1: i € A. Then i € C' and i ¢ B, D. Moreover,

AN[i—1=BnNnli—-1=Cnli—1=Dnli—1]
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because ¢ is the smallest element in AAB and ¢(AB) = ¢(BC) = ¢(CD). This
implies that co(AC) > i = co(AD). Thus ¢(AC) # c¢(AD).

Case 2: i € B. Theni € D and i ¢ A,C. Reversing the labels on the path
ABCD now puts us back in Case 1.

Type 2: Here one color class is the 4-cycle ABC D, while the other contains the
edges AC and BD. By symmetry we may assume that co(AB) € A— B; and hence
also co(AB) € C — D. Thus ¢y(AD) = ¢o(AB) € (ANC) — (BU D), which implies
that

1) c1(AB) is the rank of AN B in A, and

2) ¢1(AD) is the rank of AN D in A.

Since the rank of a subset in a set identifies the subset, we have AN B = AN D.
Interchanging the roles of A and C, we obtain CN B =CnND.

Because ¢(AC) = ¢(BD), we may assume that co(AC) = c¢o(BD) = i. Thus
either i € (ANB)—(CUD),ori€ (AND)—(CUB),ori e (CNB)—(AUD), or
i€ (CND)—(AUB). Each of these four cases contradicts either ANB =AND
orCNB=CND.

Proof of Theorem. Set t = [y/logn/+/log2 | and choose m such that (7}) < n <
(mzrl). Since f is a nondecreasing function of n and (m/t)! < (T) for t < m, we

f(n,4,3)§f((m:1>,4,3)

< (2t —1)m

< 2t pl/t

= (1+0(1)) (2108 2Tog 1 losloan loslos?
_ pVAlog2logn (14+0(1))

have
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