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Abstract

An explicit coloring of the edges of Kn is constructed such that every copy of K4 has at least

four colors on its edges. As n →∞, the number of colors used is n1/2+o(1). This improves upon

the previous bound of O(n2/3) due to Erdős and Gyárfás obtained by probabilistic methods.

The exponent 1/2 is optimal, since it is known that at least Ω(n1/2) colors are required in such

a coloring.

The coloring is related to constructions giving lower bounds for the multicolor Ramsey

number rk(C4). It is more complicated however, because of restrictions imposed on interactions

between color classes.

1 Introduction

Given graphs G and H, an (H, q)-coloring of G is a coloring of the edges of G in which the edges

of every subgraph of G that is isomorphic to H, together receive at least q colors. The minimum

number of colors in an (H, q)-coloring of G has been denoted r(G,H, q) [1]. When G = Kn and

H = Kp, we use the simpler notations (p, q)-coloring and f(n, p, q) from [4].

Erdős [4] was the first to ask for the determination of f(n, p, q) in the general case 2 ≤ q ≤(
p
2

)
, however this problem when q = 2 reduces to determining the classical Ramsey number for

multicolorings (and had been studied much earlier). For k, p > 0, the Ramsey number rk(p) is
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the minimum n such that no matter how the edges of Kn are colored with k colors, there is a

monochromatic copy of Kp. It is easy to see that f(n, p, 2) = k is equivalent to rk(p) = n + 1 and

rk−1(p) = n, hence determining all f(n, p, 2) is equivalent to determining all rk(p). On the other

hand, the numbers rk(p) seem extremely hard to determine. Even for the smallest nontrivial case

p = 3, the best bounds are ck < rk(3) < c′k! [2, 3] where c and c′ are constants. This in turn

translates to the bounds d log n
log log n < f(n, 3, 2) < d′ log n for some other constants d, d′.

The growth rate of f(n, p, q) was more thoroughly investigated by Erdős and Gyárfás [5]. They

considered the case when p is fixed and n → ∞. Using the Local Lemma, they proved the upper

bound O(ncp,q), where cp,q = p−2

(p
2)−q+1

. They also determined for each p the smallest q such that

f(n, p, q) is linear in n and the smallest q such that f(n, p, q) is quadratic in n.

One of the problems posed in [5] is to determine the growth rates of f(n, 4, q).

• For q = 2, the only bounds we have are from rk(4). They are d log n
log log n < f(n, 4, 2) < d′ log n.

• For q = 3, the probabilistic upper bound of O(
√

n ) from [5] has recently been improved to

eO(
√

log n ) in [13] by an explicit construction. It is mentioned in [5] that it remains open whether

f(n, 4, 3)/ log n → ∞ however, it appears that even f(n, 4, 3) > c log n for some constant c is not

known.

• For q = 5, it is proved in [5] that 5n/6 ≤ f(n, 4, 5) ≤ n + 1, where the upper bound holds for

infinitely many n.

In this paper we improve the probabilistic construction from [5] that yields f(n, 4, 4) < O(n2/3).

Our construction is explicit.

Theorem 1.

f(n, 4, 4) < n1/2 ec
√

log n,

where c > 0 is an absolute constant.

Since e
√

log n = o(nε) for every ε > 0, this implies the result in the abstract. Moreover, it is

pointed out in [5] that f(n, 4, 4) > cn1/2, so the exponent 1/2 in Theorem 1 is optimal. We believe

that the multiplicative factor e
√

log n can be removed.

Conjecture 2.

f(n, 4, 4) = Θ(n1/2).
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2 (4, 4)-colorings and the Ramsey numbers rk(C4)

There is an intimate connection between f(n, 4, 4) and Turán and Ramsey numbers for C4. The

Turán number ex(n,G) of a graph G is the maximum number of edges in a subgraph of Kn that

contains no copy of G. Classical results [7, 10] yield ex(n,C4) = (1/2+o(1))n3/2. This implies that

rk(C4) < (1 + o(1))k2, indeed the more precise bound rk(C4) ≤ k2 + k + 1 [2, 9] holds for all k ≥ 1.

On the other hand, obtaining a matching lower bound for rk(C4) is more difficult than obtaining

the corresponding lower bound for ex(n,C4): for the latter, we need only a single extremal graph

with no copy of C4, while for the former we need to essentially decompose the edges of Kn with

copies of this extremal graph. This was accomplished independently by Chung and Graham [3]

and Irving [9], where it is proved that rk(C4) ≥ k2 − k + 2 when k − 1 is a prime power. Recently

the lower bound has been improved by Lazebnik and Woldar [11] to k2 +2 when k is an odd prime

power, and still more recently [12] the same bound has been proved when k is any prime power.

The connection with f(n, 4, 4) becomes evident by observing that in a (4, 4)-coloring of Kn,

monochromatic C4’s are forbidden, since the four vertices forming such a copy of C4 induce a

K4 with at most three colors. However, our problem is more difficult, since to obtain a (4, 4)-

coloring it does not suffice to merely forbid monochromatic C4’s. We must also consider how color

classes interact with each other. Indeed, all known constructions yielding rk(C4) ≥ Ω(k2) are not

(4, 4)-colorings of complete graphs.

Nevertheless, in our approach the starting point is one such Ramsey decomposition. Then we

further partition each color class suitably so as to destroy all remaining K4’s with three or fewer

colors. The main ingredient for this step is a stronger version of the construction from [13] that

provided a (4, 3)-coloring of Kn with eO(
√

log n ) colors.

In section 3 we describe a variation of the construction from [13], and prove that it forbids some

special two-colored and three-colored copies of K4. In section 4 we describe a slightly modified

version of the construction from [11, 12], and again prove that certain three-colored configurations

are absent. In section 5 we further modify (or partition) this construction to forbid another three-

colored configuration. Finally, in section 6 we combine colorings to obtain a (4, 4)-coloring. This

will complete the proof of Theorem 1.

3 The Symmetric SR coloring

In this section, we describe a variation of the construction developed in [13]. Because the original

coloring arose from the subsets of a specified set and used the notion of ranking these subsets, we
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called it the Subset Ranking (SR) coloring. We call the modified construction the Symmetric Subset

Ranking (SSR) coloring.

For m > 0, let [m] = {1, . . . ,m}, and let [0] = ∅. For t ≤ m, we write
(
[m]
t

)
for the family of all

subsets of [m] with size t. The symmetric difference of the sets A and B is A4B = (A−B)∪(B−A).

The SSR Coloring.

Let G be the complete graph with vertex set
(
[m]
t

)
. For each t-set T ∈ (

[m]
t

)
, rank the 2t− 1 proper

subsets of T according to some linear order. We may choose any linear order, and the linear orders

for distinct elements of
(
[m]
t

)
need not have any relationship to one another. Given distinct vertices

A, B ∈ (
[m]
t

)
, let R denote the member of {A,B} that contains the minimum element of A4B.

Let S 6= R denote the other member of {A,B}. In order to define the edge-coloring, we need to

introduce four new parameters.

• c0(AB) is the minimum element of A4B (thus c0 ∈ R),

• c1(AB) is the rank of A ∩B in the linear order associated with the proper subsets of R,

• c2(AB) is any element of S −R,

• c3(AB) is the rank of A ∩B in the linear order associated with the proper subsets of S.

Color the edge AB with the four-dimensional vector c(AB) = (c0(AB), c1(AB), c2(AB), c3(AB)).

It is easy to see that the number of colors in the SSR coloring is at most 4tm(m − 1). Set

t =
⌈√

2 log n/
√

log 2
⌉

and choose m such that
(
m
t

)
< n ≤ (

m+1
t

)
= M . Instead of coloring Kn we

color the bigger KM and restrict to Kn. Since (m/t)t <
(
m
t

)
for t < m, the number of colors used

to color Kn is at most

4tm(m + 1) < (1 + o(1))4tt2n2/t < e2
√

2 log 4 log n(1+o(1)).

In the remainder of the section we prove various properties of the SSR coloring.

Lemma 3. Let A,B,C be vertices in an SSR colored Kn and suppose that c(AB) = c(AC). Then

A ∩B = A ∩ C.

Proof. First suppose that x = c0(AB) = c0(AC) ∈ A. Then c1(AB) = c1(AC) implies that both

A∩B and A∩C have the same rank in A. Since the rank of a subset in a set identifies the subset

uniquely, the desired conclusion holds.

Now suppose that x ∈ (B ∩ C) − A. Then x′ = c2(AB) = c2(AC) ∈ A. But in this case

c3(AB) = c3(AC) implies that both A ∩B and A ∩ C again have the same rank in A.
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Proposition 4. Let A,B, C, D be vertices in an SSR colored Kn. Then none of the following four

situations can occur (See Fig. 1):

(i) c(AB) = c(BC) = c(AC),

(ii) c(AB) = c(BC) = c(CD) and c(AC) = c(BD),

(iii) c(AB) = c(BC) = c(CD) and c(AD) = c(BD),

(iv) c(AB) = c(AC), c(BC) = c(BD), and c(AD) = c(CD).

In particular, the SSR coloring is a (4, 3)-coloring.

(iv)(ii) (iii) DC

A

C

BAB

DC

BA

D

Fig. 1

Proof. Let x = c0(AB). By symmetry, we may assume that x ∈ A in (i) and (ii).

(i) Since c0(AB) = c0(BC), we have x ∈ C. But now x 6∈ A4C, so c(AC) 6= c(AB).

(ii) Let z = c0(BD) ∈ B − D. By Lemma 3, B ∩ C = C ∩ D, which implies that z 6∈ C. Since

c0(AC) = c0(BD), we have z ∈ A. But this contradicts A∩B = B∩C, which must hold by Lemma

3. If z ∈ D − B, then let z′ = c2(AB) ∈ B −D. We now apply the preceding arguments with z

replaced by z′.

(iii) Either x ∈ (A∩C)− (B ∪D), or x ∈ (B ∩D)− (A∪C). In either case, since x = min{A4B},

A ∩ [x− 1] = B ∩ [x− 1] = C ∩ [x− 1] = D ∩ [x− 1].

This implies that c0(AD) = x 6= c0(BD), and hence c(AD) 6= c(BD).

(iv) Let x′ = c2(AB). Since c0(AB) = c0(AC) and c2(AB) = c2(AC), there is a y ∈ {x, x′} such

that y ∈ (B ∩ C) − A. Because c(BC) = c(BD), Lemma 3 gives B ∩ C = B ∩ D, which implies

that y ∈ D. Since c(AD) = c(CD), Lemma 3 gives A ∩D = C ∩D which yields the contradiction

y ∈ A.

It is easy to observe that any two-coloring of the edges of K4 yields one of the situations (i) or

(ii). This proves that the SSR coloring is a (4, 3)-coloring of Kn
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4 The Algebraic coloring

In this section we define a variation of the construction from [11, 12]. Since it was originally

motivated from Lie Algebras and is defined in terms of finite fields, we call it the Algebraic coloring.

We always let F = Fq denote the finite field with q elements, where q is an odd prime power.

The Algebraic Coloring.

Let G be the complete graph with vertex set F× F. Given vertices A = (a1, a2) and B = (b1, b2),

let δ(A, B) = 1 if a1 = b1 and 0 if a1 6= b1. Color the edge AB with the two dimensional vector

c(AB) = (a1b1 − a2 − b2 , δ(A,B)).

The Algebraic coloring gives at most 2q colors to the edges of Kq2 , since the first coordinate of the

color vector is a field element. Using standard density results for primes (see, e.g. [8]), we obtain

a coloring of E(Kn) with at most (2 + o(1))
√

n colors. The following Lemma from [11, 12] implies

that every color class in the Algebraic coloring (even without the second coordinate) contains no

C4. We include a proof for completeness.

Lemma 5. Let F be a finite field and a1, a2, b1, b2 ∈ F, with (a1, a2) 6= (b1, b2). Then the system

of equations

a1 x = b1 + x′

a2 x = b2 + x′

has at most one solution (x, x′) ∈ F× F.

Proof. Suppose that we have two solutions (x, x′) and (y, y′). Then

a1 x = b1 + x′ (1)

a2 x = b2 + x′ (2)

a1 y = b1 + y′ (3)

a2 y = b2 + y′. (4)

Subtracting (1)−(2) from (3)−(4) yields (x− y)(a1 − a2) = 0. Consequently, x = y or a1 = a2. In

the first case, (1) and (3) yield x′ = y′ giving (x, x′) = (y, y′). In the second case, (1) and (2) yield

b1 = b2 giving (a1, a2) = (b1, b2).

Proposition 6. Let A = (a1, a2), B = (b1, b2), C = (c1, c2), D = (d1, d2) be four vertices in an

Algebraically colored Kn. Then neither of the following two situations can occur (See Fig. 2):
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(i) c(AB) = c(AC) = c(AD) and c(BD) = c(CD),

(ii) c(AB) = c(AC), c(BD) = c(CD), and c(AD) = c(BC).

(i) (ii)

A B

D

B

C DC

A

Fig. 2

Proof. Let c(AB) = (α, δ(A,B)) and c(BD) = (β, δ(B,D)). Then from the first coordinates of the

color vectors we have

a1b1 = a2 + b2 + α (5)

a1c1 = a2 + c2 + α (6)

b1d1 = b2 + d2 + β (7)

c1d1 = c2 + d2 + β (8)

Subtracting (6) from (5) and (8) from (7) yield

a1(b1 − c1) = b2 − c2 (9)

d1(b1 − c1) = b2 − c2 (10)

Now (9) and (10) yield (a1 − d1)(b1 − c1) = 0. If b1 = c1, then (5) and (6) imply that b2 = c2 and

therefore B = C. This contradiction implies that b1 6= c1. Therefore a1 = d1, and we conclude that

δ(A,D) = 1.

(i) Since c(AB) = c(AC) = c(AD), we have δ(A, B) = δ(A, C) = δ(A,D) = 1. This yields

b1 = a1 = c1 which we have already excluded.

(ii) Since δ(B, C) = δ(A,D) = 1, we again conclude that b1 = c1, a contradiction.

5 Three matchings forming K4

In this section we modify the Algebraic coloring to destroy all occurrences of a special three-

colored configuration on four vertices. The configuration is made up of three monochromatic

matchings of size two, and we henceforth call it a striped K4.
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For vertices X, Y in an Algebraically colored Kn, we let c′(XY ) denote the first coordinate of

the color vector c(XY ); thus c′(XY ) ∈ F. Throughout this section we deal with an Algebraically

colored Kn, and we let A = (a1, a2), B = (b1, b2), C = (c1, c2), D = (d1, d2).

Proposition 7. Let A,B, C, D form a striped K4 in an Algebraically colored Kn. Then

(i) no two of a1, b1, c1, d1 are equal,

(ii) c1 + d1 =
2(a2 − b2)
a1 − b1

,

(iii) 2(c2 − d2) = (c1 − d1)(a1 + b1).

Proof. We have

a1b1 = a2 + b2 + α (11)

c1d1 = c2 + d2 + α (12)

a1c1 = a2 + c2 + β (13)

b1d1 = b2 + d2 + β (14)

a1d1 = a2 + d2 + γ (15)

b1c1 = b2 + c2 + γ (16)

Now (13) + (15) – (14) – (16) yields

(a1 − b1)(c1 + d1) = 2 (a2 − b2). (17)

If a1 = b1, then (17) implies that A = B, a contradiction. Hence by symmetry (using (11) and (12)

if required) we may assume that no two of a1, b1, c1, d1 are equal, thereby proving (i). (17) also

proves (ii).

(13) + (16) – (14) – (15) yields (iii).

We now modify the Algebraic coloring by adding new colors to the striped K4’s. For each q ∈ F,

let Gq be the auxiliary graph whose vertices are the edges e with c′(e) = q. Vertices (A,B) and

(C,D) in Gq are adjacent if {A,B, C, D} forms a striped K4. If a component C of Gq is bipartite,

then partition the vertices of C into two (color) classes given by the bipartition of C. Let all

nonbipartite components of Gq lie in a single class.

The partitioning of V (Gq) yields a partition of all edges e in Kn with c′(e) = q into two classes.

Assign all edges in one of these classes a new color. This assignment, when performed on each color
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class of edges of Kn, results in a coloring with (at most) twice the number of colors as before. We

call the resulting coloring the Divided Algebraic coloring (DAC).

It is easy (and crucial) to see that if two edges had different colors in the Algebraic coloring,

then they also have different colors in the DAC. In particular, Proposition 6 remains true for the

DAC. In the remainder of the section we prove that the DAC contains no striped K4’s.

Lemma 8. Let u, v be vertices in a connected nonbipartite graph G. Then there is a u, v-walk of

even length in G.

Proof. Let C be an odd cycle in G. Let P be a shortest path from u to C, and let Q be a shortest

path from u to v. If Q has even length, then Q is the required u, v-walk, so assume that Q has odd

length. Let W be the walk obtained by first traversing P , then C, then P again in the opposite

direction, and then Q. It is easy to see that W is a u, v-walk of even length.

Lemma 9. Let (A,B), (C,D) be vertices in a nonbipartite component of Gq. Then

a2 − b2

a1 − b1
=

c2 − d2

c1 − d1
.

Proof. First suppose that (X, Y ) is adjacent to both (A, B) and (A′, B′) in Gq, with X = (x1, x2)

and Y = (y1, y2). Then Proposition 7 part (ii) implies that

2(a2 − b2)
a1 − b1

= x1 + y1 =
2(a′2 − b′2)
a′1 − b′1

.

By Lemma 8, there is a walk in Gq from (A,B) to (C,D) of even length:

(A,B) = (A0, B0), (A1, B1), . . . , (A2t−1, B2t−1), (A2t, B2t) = (C, D).

Applying the argument in the previous paragraph successively to (Al, Bl) and (Al+2, Bl+2), we

obtain the desired conclusion.

Definition 10. Given vertices A,B in Kn, let A ∼ B if 2(a2 − b2) = a 2
1 − b 2

1 .

Lemma 11. Suppose that S = {A,B, C, D} forms a striped K4 in the DAC. Let X, Y ∈ S with

X 6= Y . Then X ∼ Y .

Proof. By the symmetry of a striped K4, it suffices to show that A ∼ B. Because S forms a striped

K4, we have q = c′(AB) = c′(CD). This implies that (A,B) and (C,D) are adjacent and are in a

nonbipartite component of Gq.

From Lemma 9 and Proposition 7 part (iii) we get

(a2 − b2)(c1 − d1) = (a1 − b1)(c2 − d2) = (a1 − b1)(c1 − d1)(a1 + b1)/2.

Now Proposition 7 part (i) implies that c1 6= d1, hence A ∼ B.

9



Proposition 12. There are no striped K4’s in the DAC.

Proof. Suppose on the contrary that A,B, C,D is a striped K4. Then Lemma 11 implies that

A ∼ B and C ∼ D. Clearly the vertices (A, B) and (C, D) lie in the same component of Gq, and

this component is nonbipartite. Therefore Lemma 9 applies and

a1 + b1

2
=

a2 − b2

a1 − b1
=

c2 − d2

c1 − d1
=

c1 + d1

2
.

This gives a1 + b1 = c1 + d1. By a similar argument applied to edges AC and BD we get a1 + c1 =

b1 + d1. These two equations yield b1 = c1, a contradiction to Proposition 7 part (i).

6 Partitioning the partitions

In this section we complete the proof of Theorem 1. We need a generalization of the “doubling”

procedure used to construct the Divided Algebraic coloring in the previous section. It unifies the

notions that have been implicitly used throughout this paper.

Definition 13. Let c and c∗ be two edge-colorings of G. Then the product c× c∗ of c and c∗ is the

edge-coloring of G defined by

(c× c∗)(e) = (c(e), c∗(e))

for every edge e.

Note that if two edges have distinct colors in either c or c∗, then they have distinct colors in

c× c∗. Also, if c uses d colors, and c∗ uses d∗ colors, then c× c∗ uses d× d∗ colors.

Proof of Theorem 1: We will construct a (4, 4)-coloring of Kn with at most

Z = (4 + o(1))n1/2 e2
√

2 log 4 log n(1+o(1))

colors. Let c be the SSR coloring and c∗ be the Divided Algebraic coloring. We claim that the

product c × c∗ is a (4, 4)-coloring with at most Z colors. Since c uses at most e2
√

2 log 4 log n(1+o(1))

colors, and c∗ uses at most (4 + o(1))
√

n colors, c × c∗ uses at most Z colors. It remains to show

that c× c∗ is a (4, 4)-coloring.

Since c is a (4, 3)-coloring (Proposition 4), it suffices to consider copies of K4 with exactly three

colors on their edges. Moreover, by Proposition 4 there are also no monochromatic triangles, and

by Lemma 5 there are no monochromatic C4’s in c × c∗. This leaves six remaining possibilities

(upto symmetries) for a three-colored K4 with vertex set A, B,C, D (See Fig. 3):
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(i) AB,BC,CD have the same color and AC,BD have the same color. This cannot occur by

Proposition 4 part (ii).

(ii) AB, BC,CD have the same color and AD, BD have the same color. This cannot occur by

Proposition 4 part (iii).

(iii) AB,AC have the same color, BC, BD have the same color, and AD, CD have the same color.

This cannot occur by Proposition 4 part (iv).

(iv) AB, AC, AD have the same color and BD, CD have the same color. This cannot occur by

Proposition 6 part (i).

(v) AB,AC have the same color, BD, CD have the same color, and AD,BC have the same color.

This cannot occur by Proposition 6 part (ii).

(vi) AB, CD have the same color, AC, BD have the same color, and AD,BC have the same color.

This cannot occur by Proposition 12 and the definition of c∗.

(vi)(v)(iv)

(iii)(ii)(i)

BA

C DC

B

A B

D

A B

C D

A B

C DC

A

DC

BA

D

Fig. 3: The 3-colored K4’s

This completes the proof of the theorem.
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