Solutions to Homework Set 4

1) Suppose that Eventown has fewer than $2^{\lfloor n/2 \rfloor}$ clubs. Prove that there is room for a new club without violating the Eventown rules.

Solution: It suffices to show that every maximal totally isotropic subspace of F_2^n has dimension $\lfloor n/2 \rfloor$. Let U be a totally isotropic subspace of dimension $\leq (n-2)/2$. So $\dim(U^\perp) \geq 2 + \dim(U)$. This means that we can find two vectors $u, v \in U^\perp$ such that no nontrivial linear combination of them belongs to U. If either u or v is isotropic, then adding them to U contradicts maximality of U. Otherwise, $(u + v) \cdot (u + v) = u \cdot u + v \cdot v = 0$ and we can add $u + v$ to U.

2) Show that if n is even, then there exist at least $2^{n(n+2)/8}/(n!)^2$ nonisomorphic solutions to the Oddtown problem of size n. Prove that for large n this is greater than $2^{n^2/9}$.

Solution: Let $n = 2k$. Let A be any symmetric k by k matrix with 0-1 entries, and let

$$B = \begin{pmatrix} A + I_k & A \\ A & A + I_k \end{pmatrix}.$$

Then it is easy to see that $BB^T = I_n$ (over the field of 2 elements), so B is an oddtown incidence matrix. The number of of such A is $2^{1+\cdots+k} = 2^{k(k+1)/2} = 2^{n(n+2)/8}$, since the entries in the lower half including the diagonal determine A. We must divide this by $(n!)^2$ to obtain a lower bound on the number of pairwise nonisomorphic matrices, since any permutation of the rows and columns does not change the isomorphism class. For large n, $2^{n(n+2)/8}/(n!)^2 > 2^{n^2/9}$, since

$$\left(\frac{n(n+2)}{8} - \frac{n^2}{9} \right) \ln 2 = \left(\frac{n^2}{72} + \frac{n}{4} \right) \ln 2 > (2 - o(1))n \ln n.$$

(here you need the estimate $\log(n!) \sim n \log n$).

3) Let V be a vector space of dimension n over K. Let V^{**} be the dual space of V^*. Give an explicit isomorphism between V and V^{**}.

Solution: To each element $w \in V$, assign the element $g_v \in V^{**}$, defined by $g_v(f) = f(v)$, for all $f \in V^*$. It is standard to check that this is linear and 1-1. So V is isomorphic to some subspace of V^{**}. But we know that V and
V^{**} have the same dimension, so they must be isomorphic. (I dont think this
uses the existence of a scalar product on V)

4) Let V be finite dimensional over R with positive definite scalar product.
Let A be an operator on V. Show that the image of A^T is the orthogonal
space to the kernel of A.

Solution: For every $v \in V$ and $w \in ker(A)$ we have

$$\langle A^T v, w \rangle = \langle v, Aw \rangle = \langle v, 0 \rangle = 0$$

so $A^T(V) \subset ker(A)^\perp$. On the other hand, if $v \in A^T(V)^\perp$ and $x \in V$,
then $\langle Av, x \rangle = \langle v, A^T x \rangle = 0$ so $Av = 0$ and $v \in ker(A)$. Thus $A^T(V)^\perp \subset
ker(A)$. Taking the orthogonal complement of both sides yields the opposite
containment.