Homework Set 2

1) Let \(R \) be the ring of \(2 \times 2 \) matrices with rational entries. Prove that the only ideals of \(R \) are \((0)\) and \(R \).

2) Let \(R \) be the ring of all real valued continuous functions on \([0,1] \). Let \(M \) be a maximal ideal of \(R \). Prove that there is a real number \(\gamma \in [0,1] \) such that \(M = \{ f(x) \in R : f(\gamma) = 0 \} \). Hint: Proceed by contradiction. Use the fact that \([0,1]\) is compact, so every open cover of it has a finite subcover.

3) Let \(R \) be a Euclidean ring and \(a, b \in R \). The least common multiple \(c \) of \(a \) and \(b \) is an element of \(R \) such that \(a|c \) and \(b|c \) and such that whenever \(a|x \) and \(b|x \) for \(x \in R \), then \(c|x \). Prove that \(c \) exists and that \(c \times (a, b) = ab \), where \((a, b) \) is the gcd of \(a \) and \(b \).

4) Define the derivative \(f'(x) \) of the polynomial \(f(x) = \sum_{i=0}^{n} a_{i}x^{i} \) as \(f'(x) = \sum_{i=1}^{n} ia_{i}x^{i-1} \). Prove that if \(f(x) \in F[x] \), where \(F \) is the field of rational numbers, then \(f(x) \) is divisible by the square of a polynomial if and only if \(f(x) \) and \(f'(x) \) have a gcd \(d(x) \) of positive degree.