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Abstract

In this paper, we obtain two spectral upper bounds for the k-independence
number of a graph which is is the maximum size of a set of vertices at pairwise
distance greater than k. We construct graphs that attain equality for our first
bound and show that our second bound compares favorably to previous bounds on
the k-independence number.
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1 Introduction

The independence number of a graph G, denoted by α(G), is the size of the largest
independent set of vertices in G. A natural generalization of the independence number is
the k-independence number of G, denoted by αk(G) with k ≥ 0, which is the maximum
number of vertices that are mutually at distance greater than k. Note that α0(G) equals
the number of vertices of G and α1(G) is the independence number of G.

The k-independence number of a graph is related to its injective chromatic number [16],
packing chromatic number [13], strong chromatic index [21] and has also connections to
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coding theory, where codes and anticodes are k-independent sets in appropriate associated
graphs. This parameter has been studied in various other contexts by many researchers
[1, 6, 9, 10, 11, 12, 22, 18]. It is known that determining αk is NP-Hard in general [19].

In this article, we prove two spectral upper bounds for αk that generalize two well-known
bounds for the independence number: Cvetković’s inertia bound [3] and the Hoffman
ratio bound (see [2, Theorem 3.5.2] for example). Note that αk is the independence
number of Gk, the k-th power of G. The graph Gk has the same vertex set as G and two
distinct vertices are adjacent in Gk if their distance in G is k or less. In general, even
the simplest spectral or combinatorial parameters of Gk cannot be deduced easily from
the similar parameters of G (see [4, 5, 17] for example). Our bounds depend only on the
spectrum of the adjacency matrix of G and do not require the spectrum of Gk. We prove
our main results in Section 3 and Section 4. We end with a comparison of our bounds to
previous work and some directions for future work.

2 Preliminaries

Throughout this paper G = (V,E) will be a graph (undirected, simple and loopless)
on vertex set V with n vertices, edge set E and adjacency matrix A with eigenvalues
λ1 ≥ · · · ≥ λn. The following result was proved by Haemers in his Ph.D. Thesis (see [15]
for example).

Lemma 2.1 (Eigenvalue Interlacing, [15]). Let A be a symmetric n × n matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. For some integer m < n, let S be a real n × m
matrix such that S>S = I (its columns are orthonormal), and consider the m×m matrix
B = S>AS, with eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µm. Then, the eigenvalues of B interlace
the eigenvalues of A, that is, λi ≥ µi ≥ λn−m+i, for 1 ≤ i ≤ m.

If we take S = [ I O ], then B is just a principal submatrix of A and we have:

Corollary 2.2. If B is a principal submatrix of a symmetric matrix A, then the eigen-
values of B interlace the eigenvalues of A.

3 Generalized inertia bound

Cvetković [3] (see also [2, p.39] or [14, p.205]) obtained the following upper bound for the
independence number.

Theorem 3.1 (Cvetković’s inertia bound, [3]). If G is a graph, then

α(G) ≤ min{|i : λi ≥ 0|, |i : λi ≤ 0|}. (1)

Let wk(G) = mini(A
k)ii be the minimum number of closed walks of length k where the

minimum is taken over all the vertices of G. Similarly, let Wk(G) = maxi(A
k)ii be the
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maximum number of closed walks of length k where the maximum is taken over all the
vertices of G. Our first main theorem generalizes Cvetković’s inertia bound which can be
recovered when k = 1.

Theorem 3.2. Let G be a graph on n vertices. Then,

αk(G) ≤ |{i : λki ≥ wk(G)}| and αk(G) ≤ |{i : λki ≤ Wk(G)}|. (2)

Proof. Because G has a k-independent set U of size αk, the matrix Ak has a principal
submatrix (with rows and columns corresponding to the vertices of U) whose off-diagonal
entries are 0 and whose diagonal entries equal the number of closed walks of length k
starting at vertices of U . Corollary 2.2 leads to

αk(G) ≤ |{i : λki ≥ wk(G)}| and αk(G) ≤ |{i : λki ≤ Wk(G)}|.

2

3.1 Construction attaining equality

In this section, we describe a set of graphs for which Theorem 3.2 is tight. For k,m ≥ 1
we will construct a graph G with α2k+2(G) = α2k+3(G) = m.

Le H be the graph obtained from the complete graph Kn by removing one edge. The

eigenvalues of H are
n−3±
√

(n+1)2−8
2

, 0 (each with multiplicity 1), and −1 with multiplicity
n− 3. This implies |λi(H)| < 2 for i > 1.

Let H1, ..., Hm be vertex disjoint copies of H with ui, vi ∈ V (Hi) and ui 6∼ vi for 1 ≤ i ≤
m. Let x be a new vertex. For each 1 ≤ i ≤ m, create a path of length k with x as one
endpoint and ui as the other. Let G be the resulting graph which has nm+ (k− 2)m+ 1
vertices with m

((
n
2

)
− 1
)

+mk edges.

Because the distance between any distinct vis is 2k + 4, we get that

α2k+2(G) ≥ α2k+3(G) ≥ m. (3)

We will use Theorem 3.2 to show that equality occurs in (3) for sufficiently large n.

Starting from any vertex of G, one can find a closed walk of length 2k+ 2 or 2k+ 3 that
contains an edge of some Hi. Therefore, w2k+2(G) ≥ n−2 and w2k+3(G) ≥ n−2. Choose

n so that n− 2 > (
√
m+ 4)

2k+3
. If we can show that

|λi(G)| ≤
√
m+ 4 (4)

for all i > m, then Theorem 3.2 will imply that α2k+3(G) ≤ α2k+2(G) ≤ m and we are
done. To show (4), note that the edge-set of G is the union of m edge disjoint copies of H,
the star K1,m, and m vertex disjoint copies of Pk−1. Since the star K1,m has spectral radius√
m and a disjoint union of paths has spectral radius less than 2, applying the Courant-

Weyl inequalities again along with the triangle inequality yields that |λi(G)| <
√
m + 4

for all i > m and finishes our proof.
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4 Generalized Hoffman bound

The following bound on the independence number is an unpublished result of Hoffman
known as the Hoffman’s ratio bound (see [2, p.39] or [14, p.204]).

Theorem 4.1 (Hoffman bound). If G is regular then α(G) ≤ n −λn
λ1−λn and if a coclique

C meets this bound then every vertex not in C is adjacent to precisely −λn vertices of C.

Let G be a d-regular graph on n vertices (undirected, simple, and loopless) having an adja-
cency matrix A with eigenvalues d = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −d. Let λ = max{|λ2|, |λn|}.
We use Alon’s notation and say G is an (n, d, λ)-graph (see also [20, p.19]). Let W̃k =
maxi

∑k
j=1(A

j)ii be the maximum over all vertices of the number of closed walks of length
at most k. Our second theorem is an extension of the Hoffman bound to k-independent
sets.

Theorem 4.2. Let G be an (n, d, λ)-graph and k a natural number. Then

αk(G) ≤ n
W̃k +

∑k
j=1 λ

j∑k
j=1 d

j +
∑k

j=1 λ
j
. (5)

The proof of Theorem 4.2 will be given as a corollary to a type of Expander-Mixing
Lemma. For k a natural number, denote

λ(k) = λ+ λ2 + · · ·+ λk,

and
d(k) = d+ d2 + · · ·+ dk.

Theorem 4.3 (k-Expander Mixing Lemma). Let G be an (n, d, λ)-graph. For S, T ⊆ G
let Wk(S, T ) be the number of walks of length at most k with one endpoint in S and one
endpoint in T . Then for any S, T ⊆ V , we have∣∣∣∣Wk(S, T )− d(k)|S||T |

n

∣∣∣∣ ≤ λ(k)

√
|S||T |

(
1− |S|

n

)(
1− |T |

n

)
< λ(k)

√
|S||T |.

Proof. Let S, T ⊂ V (G) and let 1S and 1T be the characteristic vectors for S and T
respectively. Then

Wk(S, T ) = 1tS

(
k∑
j=1

Aj

)
1T .

Let x1, ..., xn be an orthonormal basis of eigenvectors for A. Then 1S =
∑n

i=1 αixi and
1T =

∑n
i=1 βixi, where αi = 〈1S, xi〉 and βi = 〈1T , xi〉. Note that

∑
α2
i = 〈1S,1S〉 = |S|

and similarly,
∑
β2
i = |T |. Because G is d-regular, we get that x1 = 1√

n
1 and so α1 = |S|

n

and β1 = |T |
n

. Now, since i 6= j implies 〈xi, xj〉 = 0, we have
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Wk(S, T ) =

(
n∑
i=1

αixi

)t( k∑
j=1

Aj

)(
n∑
i=1

βixi

)
=
∑
i,j

(αixi)((βj(λj + λ2j + · · ·+ λkj )xj)

=
n∑
i=1

(λi + λ2i + · · ·+ λki )αiβi

=
dk
n
|S||T |+

n∑
i=2

(λi + λ2i + · · ·+ λki )αiβi

Therefore, we have∣∣∣∣Wk(S, T )− dk
n
|S||T |

∣∣∣∣ =

∣∣∣∣∣
n∑
i=2

(λi + λ2i + · · ·+ λki )αiβi

∣∣∣∣∣
≤ λ(k)

n∑
i=2

|αiβi|

≤ λ(k)

(
n∑
i=2

α2
i

)1/2( n∑
i=2

β2
i

)1/2

,

where the last inequality is by Cauchy-Schwarz. Now since

n∑
i=2

α2
i = |S| − |S|

2

n2

and
n∑
i=2

β2
i = |T | − |T |

2

n2
,

we have the result. 2

Now we are ready to prove the bound from Theorem 4.2.

Proof. [Proof of Theorem 4.2] Let S be a k-independent set in G with |S| = αk(G),
and let Wk(S, S) be equal to the number of closed walks of length at most k starting in
S. Theorem 4.3 gives

d(k)|S|2

n
−Wk(S, S) ≤ λ(k)|S|

(
1− |S|

n

)
.

Recalling that W̃k = maxi
∑k

j=1(A
j)ii, we have Wk(S, S) ≤ |S|W̃k. This yields

d(k)|S|
n
− W̃k ≤ λ(k)

(
1− |S|

n

)
.
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Solving for |S| and substituting |S| = αk gives

αk ≤ n
W̃k + λ(k)

d(k) + λ(k)
.

2

Note that the bound from Theorem 4.2 behaves nicely if W̃k and λk are small with respect
of dk. It is easy to see that W̃k ≤ dk−1

d−1 (we expand d in each step but the last step we
do not have any freedom since we assume that we are counting closed walks). Since G is
d-regular and we know that W̃k ≤ dk−1, the above bound performs well for graphs with
a good spectral gap.

5 Concluding Remarks

In this section, we note how our theorems compare with previous upper bounds on αk.
Our generalized Hoffman bound for αk is best compared with Firby and Haviland [12],
who proved that if G is a connected graph of order n ≥ 2 then

αk(G) ≤ 2(n− ε)
k + 2− ε

(6)

where ε ≡ k (mod 2). If d is large compared to k and λ = o(d), then Theorem 4.2 is
much better than (6). We note that almost all d-regular graphs have λ = o(d) as d→∞.

In [8], Fiol (improving work from [9]) obtained the bound

αk(G) ≤ 2n

Pk(λ1)
, (7)

when G is a regular graph (later generalized to nonregular graphs in [7]), and Pk is the
k-alternating polynomial of G. The polynomial Pk is defined by the solution of a linear
programming problem which depends on the spectrum of the graph G. It is nontrivial
to compute Pk, and it is unclear how (7) compares with our theorems. However, we note
that (7) cannot be strictly better in general than our Theorem 3.2, as there are cases
where Theorem 3.2 is sharp, shown in subsection 3.1. Furthermore, our theorems require
less information to apply than (7).

If p is a polynomial of degree at most k, and U is a k-independent set in G, then p(A)
has a principal submatrix defined by U that is diagonal, with diagonal entries defined by
a linear combination of various closed walk. Theorems 3.2 and 4.2 are obtained by taking
p(A) = Ak, but hold also for in general for other polynomials of degree at most k. It is not
clear how to choose a polynomial p(A) to optimize our bounds and we leave as an open
problem. Finally, we were able to construct graphs attaining equality in Theorem3.2 but
not in Theorem 4.2. We leave open whether the bound in Theorem 4.2 is attained for
some graphs or can be improved in general.
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