
Kempe’s Proof

Mary Radcliffe

Here is a full write-up of Kempe’s “Proof” of the 4-color conjecture. We shall
use the following lemma, whose proof is a quick application of Euler’s Formula.

Lemma 1. Every planar graph has a vertex of degree at most 5.

Kempe’s Proof. Suppose that the 4-color conjecture is false, so that there exists
a planar graph having no 4-coloring. Let G be such a graph, having minimal
order (that is, the smallest number of vertices). Embed G in the plane, and
by possibly adding edges produce a graph T that has every region bounded by
exactly three edges. Note that since G ⊂ T , it must be that χ(G) ≤ χ(T ).
Hence, χ(T ) ≥ 5.

Let v ∈ V (T ) be a vertex having degree at most 5. Note that as every
region in T is bounded by a triangle, it must be that the degree of v is at least
2. Moreover, by minimality, we have that T\{v} is 4-colorable.

Case 1: deg v = 2 or deg v = 3

Color T\{v} with 4 colors. Note that v can be adjacent to at most 3 distinct
such colors, and hence this coloring can be extended to a 4-coloring of T , a
contradiction.

Case 2: deg v = 4

Color T\{v} with 4 colors. If v is adjacent to at most 3 distinct such colors,
we can extend this coloring to T . Hence we may assume that v is adjacent to
one vertex of each color, as shown in Figure 1.
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Let TRG be the subgraph of T\{v} induced on those vertices colored Red or
Green. If w and y are in different components of TRG, we may select one such
component, and exchange the roles of Red and Green. In this way, we force w
and y to take the same color, and thus we have only 3 distinct colors adjacent
to v, and can extend the 4-coloring to T .

If w and y are in the same component of TRG, then there exists a path
connecting w to y consisting only of Red and Green vertices, as shown in Figure
2. Note that in this case, we cannot have a path connecting x to z consisting
only of Blue and Yellow vertices, due to planarity. Hence, if we consider TBY ,
the subgraph of T\{v} induced on only Blue and Yellow vertices, it must be the
case that z and x are in different components of TBY . We may therefore select
one such component and switch colors, as in the case described above. Hence,
we will have only 3 distinct colors adjacent to v, and thus we can extend the
4-coloring to T .
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In any case, if deg v = 4, we can extend a 4-coloring on T\{v} to a 4-coloring
on T , a contradiction.

Case 3: deg v = 5

As above, if v is adjacent to at most 3 distinct colors in a 4-coloring of T\{v},
we may extend such a coloring immediately to T . Hence, we may assume that
v is adjacent to all 4 colors. Note that this will occur as shown in Figure 3,
without loss of generality.

As before, let us consider TRG. Note that if vertices u and x are in different
components, we may perform the same component color-switching as in the
previous case, in order to extend to a 4-coloring on T . Likewise, if u and y
are in different components of TRY , we can do the same. Hence, it suffices to
consider the case that u and x are connected by a path of only Green and Red
vertices, and u and x are connected by a path of only Yellow and Red vertices.
This is shown in Figure 4.

Now, let us consider TBG. Note that z and x must be in different components
in this graph, as the path between u and y is only in red and yellow, and it
is blocking any Blue-Green path between z and x. Hence, we may select the
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component in TBG containing z and perform the color-switching, which then
turns z Green.

Performing the same operation on TBY , we can turn w Yellow.

Upon making these changes, we therefore have the colors of the vertices
adjacent to v do not include Blue, and therefore we can extend the 4-coloring
on T\{v} to one on T by coloring v Blue.
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Figure 4

Therefore, in any case, we can produce a 4-coloring on T , and hence χ(T ) ≤
4. But as observed above, χ(T ) ≥ χ(G), and therefore χ(G) ≤ 4, a contradic-
tion.
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Therefore, no minimal counterexample exists.
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