Math 301: Homework 4

Mary Radcliffe

due 5 Oct 2015

Complete the following problems. Fully justify each response.

- 1. Let A be an $n \times n$ array, in which the numbers 1 through n appear exactly n times each. Prove that there exists either a row or column in A in which appear at least \sqrt{n} distinct numbers.
- 2. Prove Sperner's Theorem: If \mathcal{F} is a collection of subsets of [n], such that no set in \mathcal{F} is contained in any other set in S, then $|\mathcal{F}| \leq {m \choose \lfloor m/2 \rfloor}$.
- 3. Let G be a triangle-free graph having n vertices and m edges. Given a vertex v, define the closed neighborhood

$$N[v] = \{ u \in V(G) \mid u = v \text{ or } u \sim v \}.$$

Prove that there exists a vertex v such that the $V(G)\backslash N[v]$ contains at most $m-\frac{4m^2}{n^2}$ edges¹.

Note that the average degree in G is $\frac{2m}{n}$, so a subgraph containing $m - (\frac{2m}{n})^2$ edges must be substantially sparser than the graph G itself.