
Math 241: Exam 2 Review Solutions

Practice Problems If unspecified, you may assume that any vectors mentioned are mem-
bers of a vector space V over R. If unspecified, you may assume that any matrices mentioned
have all entries from R.

1. Let A be an m× n matrix, B an n× k matrix. Prove that the ith row of AB is the ith

row of A times B.

Solution: Write A = [aij] and B = [bij]. By definition, we have that the ijth

position of AB is given by
∑n

k=1 aikbkj.

Now, let ai = [ai1, ai2, . . . , ain] be the ith row of A. Then aiB is a 1 × k
matrix, with the jth position given by

∑n
k=1 aikbkj. Note that this is the

same as the ijth position of AB. Hence, the ith row of AB is equal to the ith

row of A times B.

2. Prove that if A and B are both symmetric n × n matrices, then AB is symmetric if
and only if AB = BA.

Solution: Suppose A and B are both symmetric n×n matrices, and suppose
further that AB = BA. Then (AB)T = BTAT = BA = AB, so AB is
symmetric.

Suppose A and B are both symmetric n × n matrices, and suppose further
that AB is symmetric. Then AB = (AB)T = BTAT = BA, so AB = BA.

3. Let A be an n × n matrix. Show that if there exists some b for which Ax = b has a
unique solution, then A is invertible.

Solution: Suppose there exists b such that Ax = b has a unique solution,
say x0.

Now, suppose that Ay = 0. Then it must be the case that x0 + y is also a
solution to Ax = b, and hence since x0 is the only such solution, we must
have that y = 0.

Therefore, the only solution to Ay = 0 is the 0 vector, and hence Null (A)
is trivial. Thus, A is invertible.

4. Suppose A is an n× n invertible matrix, and B is obtained from A by adding 2 times
the first row of A to the second row of A. Show that B−1 is obtained from A−1 by
adding -2 times the first row of A−1 to the second row of A−1.

Solution: Consider the matrix

E =


1 0 0 . . . 0
2 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .



Notice that EA performs the operation of adding two times the first row of
A to the second row of A, so EA = B. Then B−1 = A−1E−1, and by noting
that E−1 is identical to E, with 2 replaced with −2, the result follows.

5. Is the matrix A =

 1 0 1
0 1 0
1 1 0

 invertible? How do you know?

Solution: Yes, this matrix is invertible. This can be seen because the columns
of the matrix are linearly independent, and hence the matrix is invertible.

6. Determine if each of the following sets of vectors are linearly independent or dependent;
prove that your answer is correct. If they are dependent, find a maximum subset that
is independent.

(a)


 1

1
0

 ,
 1

0
1

 ,
 1
−1

2


Solution: No, these are not linearly independent, as 1

1
0

− 2

 1
0
1

+

 1
−1

2

 =

 0
0
0

 .
A maximum linearly independent subset is any subset of size 2.

(b)


 1

1
0

 ,
 1

0
1

 ,
 1

3
2

 ,
 1

3
0


Solution: No, these are not linearly independent, as there are 4 vectors in
a subspace of dimension 3, which cannot ever be LI. Note, however, that

the first three vectors are LI, since if α1

 1
1
0

+ α2

 1
0
1

+ α3

 1
3
2

 = 0
0
0

, we must have 2α2 = −α3, and 3α1 = −α3, but then α1+α2+α3 6=

0. Hence, the first three vectors form a maximum subset that is linearly
independent.

(c)


 a

0
0

 ,
 b
c
0

 ,
 d
e
f

, where a, b, c, d, e, f are all nonzero constants.

Solution: Yes, these three vectors are linearly independent. If α1

 a
0
0

+

α2

 b
c
0

+α3

 d
e
f

 =

 0
0
0

, then it must be the case that fα3 = 0, so

α3 = 0, and then cα2 = 0, so α2 = 0, and then aα1 = 0, so α1 = 0.



7. Suppose {v1,v2, . . . ,vk} are linearly independent, and that vk+1 6∈ Span {vi} for any
i. Must the set {v1,v2, . . . ,vk,vk+1} also be linearly independent? Explain.

Solution: No. Imagine that k = 2, and that {v1,v2} span a plane. Select
any vector v3 on that plane that is not parallel to v1 or v2. Then this vector
satisfies the condition that v3 6∈ Span {vi} for i = 1, 2, but {v1,v2,v3} is
linearly dependent.

8. Let S = {v1,v2, . . . ,vk} be a spanning set for a vector space V . Explain why the
following two statements are equivalent:

• For all v ∈ V , there is a unique set of coefficients α1, α2, . . . , αk such that v =
α1v1 + α2v2 + · · ·+ αkvk.

• S is a basis for V .

Solution: Recall that S is a basis for V if and only if the only solution to
the equation a1v1 + a2v2 + · · · + akvk = 0 is the trivial one, i.e., all ai = 0.
Moreover, if v = α1v1 + α2v2 + · · ·+ αkvk = β1v1 + β2v2 + · · ·+ βkvk, then
a1 = α1−β1, a2 = α2−β2, . . . , ak = αk−βk is a solution to the homogeneous
linear combination above. Hence S is a basis for V if and only if for every
v ∈ V , if there at most one set of coefficients for which the above linear
combination works. Note that as S is a spanning set, this is true if and only
if for every v, there is exactly one unique set of coefficients.

9. Suppose B and C are both bases for a vector space V .

(a) How do you compute the change of basis matrix A from representations with
respect to B to representations with respect to C?

Solution: The columns of A are obtained by writing the vectors from B
in their C-coordinate representation.

(b) Explain why the matrix A from part (a) will always be invertible.

Solution: Since a basis always consists of linearly independent vectors,
the columns of A will be linearly independent. Moreover, as |B| = |C|,
the number of columns of A is the same as the number of rows of A.
These two things together ensure that A is invertible.

10. Give an example of four vectors that are linearly dependent, but any subset of three
of them is linearly independent.

Solution:

 1
0
0

 ,
 0

1
0

 ,
 0

0
1

 ,
 1

1
1

 . (or, you know, any 4 that work)

11. Prove that for any set S of vectors, rankS ≤ |S|.



Solution: By definition, we have that rankS = dim Span {S}. Let B be
a basis for Span {S}. Then B is linearly independent in Span {S}, and S
is spanning for Span {S}, so by the lemma that spanning sets are at least
as large as linearly independent sets, we have |S| ≥ |B| = dim Span {S} =
rankS.

12. SupposeW ⊆ V are both vector spaces. Prove that dimW ≤ dimV , and that dimW =
dimV if and only if W = V .

Solution: Let B be a basis for W . Then B ⊆ V is a subset of V , and is
linearly independent in V , and hence |B| = dimW ≤ dimV .

On the other hand, if |B| = dimV , then B is a dimV sized linearly indepen-
dent set in V , and hence is a basis for V . But B is assumed to be a basis for
W , so W = V .

13. Suppose A and B are n × n matrices such that AB = In. Prove that A and B must
both be invertible matrices, and that B = A−1. That is to say, the only matrix by
which we can multiply A to get the identity is, in fact, its inverse.

Solution: Define f : Rn → Rn by f(x) = Ax, and define g : Rn → Rn by
g(x) = Bx. Note that f ◦ g is the identity function. In particular, f ◦ g is
injective and surjective. Note that by injectivity of f ◦ g, we must have that
g is injective, since Ker (f ◦ g) ⊇ Ker (g). Therefore, by the TFAE theorem,
we have that B is invertible. But then as AB = In, multiplying by B−1 on
the right yields A = B−1, allowing us to conclude also that A is invertible
and that A and B are inverse to each other.

14. Show that the dot product over Z2 is not an inner product.

Solution: Consider

 1
1
0

 ·
 1

1
0

 = 1 + 1 + 0 = 0, which violates positivity

for an inner product. Hence the dot product over Z2 is not an inner product.

15. Suppose V is a vector space with an inner product and associated norm. Prove that if
u is orthogonal to v, then

‖αu + βv‖2 = α2‖u‖2 + β2‖v‖2.

Give an example to show that the condition of orthogonality is necessary.

Solution:

‖αu + βv‖2 = 〈αu + βv, αu + βv〉
= α2〈u,u〉+ 2αβ〈u,v〉+ β2〈v,v〉
= α2‖u‖2 + 0 + β2‖v‖2.

Literally every example of nonorthogonal vectors will fail.



16. Given a subspace W and a vector v, we say that z ∈ W is the “closest point in W to
v” if z = arg minw∈W ‖w− v‖. That is to say, w is the vector in W with the smallest
distance to v.

Prove that if W = Span {w}, then the closest point in W to v is Projw v.

Solution: Let a = Projw v, so a = 〈v,w〉
〈w,w〉w. Write α = 〈v,w〉

〈w,w〉 . Now, let βw be

any other point in W . Write βw = a + (a− βw) = αw + (β − α)w. Then

‖βw − v‖ = ‖αw + (β − α)w − v‖
= ‖(αw − v) + (β − α)w‖.

Now, by definition, (αw−v) ⊥ w, so by the previous problem, we therefore
have

‖βw − v‖2 = ‖(αw − v) + (β − α)w‖2

= ‖(αw − v)‖2 + (β − α)2‖w‖2

≥ ‖(αw − v)‖2,

with equality only if β = α. Hence, for any βw ∈ W with βw 6= Projw v,
we have ‖βw − v‖ ≥ ‖a− v‖, and hence a = arg minw∈W ‖w − v‖.

17. Determine if the matrix A =

[
0 1
2 1

]
can be diagonalized. If so, diagonalize it.

Solution: First, consider

det(A− λI) = −λ(1− λ)− 2 = λ2 − λ− 2 = (λ− 2)(λ+ 1).

Hence, each eigenvalue of A has algebraic multiplicity 1, and thus has geo-
metric multiplicity 1. Therefore, A can be diagonalized.

Note that the nullspace of A− 2I =

[
−2 1

2 −1

]
is Span

{[
1
2

]}
, and the

nullspace of A + I =

[
1 1
2 2

]
is Span

{[
1
−1

]}
. Hence, a diagonalization

of A as SΛS−1 can be obtained by

S =

[
1 1
2 −1

]
, Λ =

[
2 0
0 −1

]
.

18. Prove that if A is similar to B, then the eigenvalues of A are the same as the eigenvalues
of B, with the same algebraic and geometric multiplicities.

Solution: Recall from Klein that for any two matrices C,D, we have det(CD) =
det(C) det(D).



Now, suppose that A = SBS−1. Then,

det(A− λI) = det(SBS−1 − λI)

= det(SBS−1 − λSIS−1)
= det(S(B − λI)S−1)

= detS det(B − λI) det(S−1)

= detS det(B − λI)
1

detS
= det(B − λI).

Therefore, as the characteristic equations of A and B are identical, we have
that the eigenvalues of A and B are identical, with the same algebraic mul-
tiplicities.

Now, suppose that v is an eigenvector for B with corresponding eigenvalue λ,
and let w = Sv. Then Aw = SBS−1w = SBS−1Sv = SBv = λSv = λw,
so Sv is an eigenvector for A corresponding to eigenvalue λ. Moreover, as S
is invertible, any basis for the eigenspace for λ as an eigenvalue of B will be
linearly independent under the transformation S, and hence the eigenspace
for λ as an eigenvalue of A has dimension at least as large as that for B.
Running this same argument backwards yields the opposite result, and hence
the eigenspaces have the same dimensions. Therefore, the eigenvalues have
the same geometric multiplicities as well.

19. Consider the matrix A =

[
0 a
a 0

]
for some constant a.

Given v =

[
v1
v2

]
∈ R2, write v as a linear combination of eigenvectors for A. Use this

to calculate Anv for any n ≥ 1.

Solution: First, note that det(A− λI) = (−λ)2− a2 = (λ− a)(λ+ a), so the

eigenvalues of A are ±a. For the eigenvalue a, we have eigenvector

[
1
1

]
,

and for eigenvalue −a we have eigenvector

[
1
−1

]
.

Hence we may write v =

[
v1
v2

]
= v1+v2

2

[
1
1

]
+ v1−v2

2

[
1
−1

]
. Therefore,

we have

Anv = An

(
v1 + v2

2

[
1
1

]
+
v1 − v2

2

[
1
−1

])
= an

v1 + v2
2

[
1
1

]
+(−a)n

v1 − v2
2

[
1
−1

]
.

20. Suppose 0 is an eigenvalue for a matrix A. What is the corresponding eigenspace?

Solution: The eigenspace for 0 is the null space for A.


