## Math 241: Exam 1 Review

## Key Concepts

- Understanding of vectors and vector arithmetic, including properties of addition, scalar multiplication, and inner products
- Expressing linear equations/systems in terms of dot products, solutions to triangular systems
- Spans and linear combinations, and how these relate to planes/lines/etc, and to solutions to systems of linear equations
- Vector spaces: what they are, how to determine if a set of vectors is a space or not
- Matrices and basic matrix operations, addition, scalar multiplication, and matrixvector multiplication
- Interpretations of matrix-vector multiplication: dot products, linear combinations of the columns of $A$, system of linear equations
- Null space of a matrix $A$ : how to compute, relationship to the matrix equation $A \mathbf{x}=\mathbf{b}$
- Linear functions: what they are, how to determine if a function is linear
- Injectivity and surjectivity, and how to use a matrix representation $f(\mathbf{x})=A \mathbf{x}$ to determine whether $f$ is injective and/or surjective.


## Terms

- Vector (associated terms: elements, entries, length)
- Standard unit vector
- Linear combination (associated terms: affine combination, convex combination)
- System of linear equations
- Span, Spanning set (aka generating set)
- Homogeneous linear system (also nonhomogeneous)
- Vector space, vector subspace
- Matrix (associated terms: dimension, elements, square, column, row, upper triangular, transpose)
- Column space
- Null space
- Linear function (aka linear transformation)
- Kernel
- Injective (aka one-to-one)
- Image (aka range)
- Surjective (aka onto)


## Key Theorems

- If $V$ is a vector space and $W \subseteq V$, then $W$ is a vector subspace of $V$ if and only if

1. $W$ contains $\mathbf{0}$
2. $W$ is closed under addition
3. $W$ is closed under scalar multiplication

- If $V$ is a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is a vector subspace of $V$.
- If $A$ is an $m \times n$ matrix, then $A \mathbf{e}_{k}$ is the $k^{\text {th }}$ column of $A$.
- Let $A$ be an $m \times n$ matrix. Then $\operatorname{Null}(A)$ is a vector subspace of $\mathbb{R}^{n}$.
- Let $A$ be an $m \times n$ matrix, and let $\mathbf{b} \in \mathbb{R}^{m}$. If $\mathbf{x}_{1}$ is a particular solution to the equation $A \mathbf{x}=\mathbf{b}$, then the set of solutions to the equation takes the form $\left\{\mathbf{x}_{1}+\mathbf{y} \mid \mathbf{y} \in \operatorname{Null}(A)\right\}$.
- Let $f: V \rightarrow W$ be a linear function on vector spaces $V$ and $W$. Then $\operatorname{Ker}(f)$ is a vector subpsace of $V$, and $\operatorname{Im}(f)$ is a vector subspace of $W$.
- Let $f: V \rightarrow W$ be a linear function on vector spaces $V$ and $W$. Then $f$ is injective if and only if $\operatorname{Ker}(f)=\{\mathbf{0}\}$.
- Let $f: V \rightarrow W$ be a linear function on vector spaces $V$ and $W$. Then $f$ is surjective if and only if $\operatorname{Im}(f)=W$.
- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear function, represented as $f(\mathbf{x})=A \mathbf{x}$. Then $\operatorname{Ker}(f)=$ $\operatorname{Null}(A)$, and $\operatorname{Im} f=\operatorname{Col}(A)$.


## Practice Problems

1. Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$. Write an expression for the line that goes through these two vectors in $\mathbb{R}^{3}$.
2. Let $\mathbf{u}, \mathbf{v}$ be vectors over $\mathbb{Z}_{2}$. Explain why $\mathbf{u}+\mathbf{v}=\mathbf{u}-\mathbf{v}$.
3. Here is a piece of code used to solve a triangular system of $n$ equations in $n$ variables.
```
def triangular_solve(coeff, b):
    n=len(b)
    x=zero_vec(n)
    for i in reversed(range(n)):
        x[i] = (b[i]-dot_product(coeff[i], x))/coeff[i][i]
    return x
```

In this code, the first input is a list of lists representing coefficients for the equations, and the second input is the right hand side of the system. So, for example, if you had a system

$$
\begin{aligned}
2 x_{1}+3 x_{2} & =3 \\
4 x_{2} & =1
\end{aligned}
$$

then the inputs would take the form

$$
\operatorname{coeff}=[[2,3],[0,4]], \quad b=[3,1] .
$$

You may assume here that zero_vec and dot_product are correctly defined helper functions that return the length $n$ zero vector (as a list) and the dot product of two vectors (represented as lists), respectively.
(a) Explain (perhaps by showing a small example) how this algorithm works to solve a triangular system.
(b) Explain (perhaps by showing a small example) when this code will fail.
4. Show that the set

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

is a generating set for $\mathbb{R}^{3}$.
5. Show that the set

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\right\}
$$

is not a generating set for $\mathbb{R}^{3}$.
6. Consider the plane in $\mathbb{R}^{3}$ given by the solutions to the equation $4 x-3 y+z=0$. Write this plane as the span of some vectors in $\mathbb{R}^{3}$.
7. Determine whether each of the following sets is a vector space in $\mathbb{R}^{4}$. Justify your response.
(a) $\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \in \mathbb{R}^{4}: x_{1}+x_{2}=3\right\}$
(b) $\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \in \mathbb{R}^{4}: x_{1}+x_{2}+x_{3}+x_{4}=0\right\}$
(c) $\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \in \mathbb{R}^{4}: x_{1} x_{2} x_{3} x_{4}=0\right\}$
8. Let $\mathcal{P}_{n}$ denote the vector space of polynomials having degree at most $n$, with coefficients from $\mathbb{R}$. Show that the set of polynomials having degree at most $k$, with $k<n$, is a vector subspace of $\mathcal{P}_{n}$.
9. Explain how to represent a system of equations with a matrix equation. You may want to use an example to help illustrate your points.
10. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a real-valued matrix. Show that $\operatorname{Null}(A)$ is nontrivial if and only if $a d-b c=0$.
11. Let $A \mathbf{x}=\mathbf{b}$ be a matrix equation, and let $\mathbf{x}_{1}$ be a solution to this equation. How do you find other solutions? Why does this technique work?
12. Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Write the null space of $A$ as the span of some vector(s).
13. Define a function $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ by $f(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left[\begin{array}{cccc}
1 & 0 & -1 & 4 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Write $\operatorname{Ker}(f)$ as the span of some vector(s).
(b) Write $\operatorname{Im}(f)$ as the span of some vector(s).
(c) Is $f$ injective? Why/why not?
(d) Is $f$ surjective? Why/why not?
14. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear function, and you know that

$$
f\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \text { and } f\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Find a matrix $A$ so that $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{2}$.
15. Let $f: V \rightarrow W$ be a linear function on vector spaces $V$ and $W$. Explain how $\operatorname{Ker}(f)$ relates to injectivity. Why is this property true?
16. Let $f(\mathbf{x})=A \mathbf{x}$ be a linear function from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$, where $A$ is a matrix. Explain how surjectivity of $f$ relates to systems of linear equations with coefficients given by $A$. You may wish to use an example to help illustrate your points.
17. Can you construct a $3 \times 3$ matrix $A$ so that

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
z+x \\
y \\
x
\end{array}\right]
$$

for all $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}$ ? If so, do it. If not, explain why not.
18. Can you construct a $3 \times 3$ matrix $A$ so that

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
z+x+1 \\
y \\
x
\end{array}\right]
$$

for all $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}$ ? If so, do it. If not, explain why not.
19. Suppose that $\mathbf{v} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$. Show that

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{v, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} .
$$

20. Let $W_{1}, W_{2}$ be vector subspaces of a vector space $V$. Define $U=\left\{w_{1}+w_{2}: w_{1} \in\right.$ $\left.W_{1}, w_{2} \in W_{2}\right\}$. Is this a vector subspace of $V$ ? Why/why not?
21. Let $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a diagonal matrix over $\mathbb{R}$, and let $f(\mathbf{x})=D \mathbf{x}$ be a linear transformation from $\mathbb{R}^{n}$ to $\mathbb{R}^{n}$. Show that $\operatorname{Ker}(f)$ is the span of all $\mathbf{e}_{i}$ such that $d_{i}=0$, and $\operatorname{Im}(f)$ is the span of all $\mathbf{e}_{i}$ such that $d_{i} \neq 0$.
