
Math 241: Final Exam Review

Key Concepts

• Understanding of vectors, matrices, and associated arithmetic, including properties of
addition, scalar multiplication, matrix-vector products, matrix-matrix products, in-
verses, inner products, and norms

• Connections between systems of linear equations and matrix equations

• Spans and linear combinations, and how these relate to planes/lines/etc, and to solu-
tions to systems of linear equations

• Vector spaces: what they are, how to determine if a set of vectors is a space or not

• Interpretations of matrix-vector multiplication: dot products, linear combinations of
the columns of A, system of linear equations

• Null space of a matrix A: how to compute, relationship to the matrix equation Ax = b

• Linear functions: what they are, how to determine if a function is linear. Associated
function terms (injective, surjective, bijective, etc.)

• Definition of invertible linear function, matrix, understanding how to compute inverse
of an n× n matrix A.

• Definitions of linearly dependent, independent, basis. Know how to construct a basis
from a spanning set, how to change basis, and theorems surrounding bases, including
dimension of a space, how to determine it, and related theory

• Rank-Nullity Theorem, for matrices and for linear transformations

• Determinant: Definition, how to compute, purpose

• Eigenvalues/eigenvectors: definition, how to compute, purpose. Includes: awareness
and understanding of diagonalization

• Projection onto a subspace, including how to compute using Gram-Schmidt orthogo-
nalization and using least squares

• Singular value decomposition: how to compute, how to express A as UΣV T and what
the parts of this decomposition mean. Understand what is meant by a “best rank k
approximation” and how to get it from the SVD.

• Least Squares: understand how to calculate a least squares solution to an unsolvable
system of equations, by QR-decomposition, pseudoinverse, and orthogonal projection.
Understand how least squares can be used to fit functions to data, and basics of how
to construct least squares problems.



Terms

• Vector (associated terms: elements, en-
tries, length)

• Standard unit vector

• Linear combination (associated terms:
affine combination, convex combina-
tion)

• System of linear equations

• Span, Spanning set (aka generating set)

• Homogeneous linear system (also non-
homogeneous)

• Vector space, vector subspace

• Matrix (associated terms: dimension,
elements, square, column, row, upper
triangular, transpose)

• Column space

• Null space

• Linear function (aka linear transforma-
tion)

• Kernel

• Injective (aka one-to-one)

• Image (aka range)

• Surjective (aka onto)

• Bijective

• Inverse (for a function or a matrix)

• Linearly independent/dependent

• Basis

• Dimension

• Rank (of a matrix, or a set S)

• Nullity

• Determinant

• Eigenvalue, eigenvector, eigenspace

• Characteristic equation

• Algebraic multiplicity, geometric multi-
plicity

• Diagonalizable

• Similar

• Norm

• Inner product, associated norm (‖v‖ =√
〈v, v〉)

• Orthogonal, orthonormal

• Projection onto a subpsace

• Singular value, right singular vector,
left singular vector, singular value de-
composition

• Least Squares problem, least squares
solution

• Residual

• Time Series



Key Theorems

• If V is a vector space and W ⊆ V , then W is a vector subspace of V if and only if

1. W contains 0

2. W is closed under addition

3. W is closed under scalar multiplication

• If V is a vector space and v1,v2, . . . ,vk ∈ V , then Span {v1,v2, . . . ,vk} is a vector
subspace of V .

• Let A be an m×n matrix, and let b ∈ Rm. If x1 is a particular solution to the equation
Ax = b, then the set of solutions to the equation takes the form {x1+y | y ∈ Null (A)}.

• Let f : V → W be a linear function on vector spaces V and W . Then Ker (f) is a
vector subpsace of V , and Im (f) is a vector subspace of W .

• Let f : V → W be a linear function on vector spaces V and W . Then f is injective if
and only if Ker (f) = {0}.

• Let f : V → W be a linear function on vector spaces V and W . Then f is surjective
if and only if Im (f) = W .

• Let f : Rn → Rm be a linear function, represented as f(x) = Ax. Then Ker (f) =
Null (A), and Im f = Col (A).

• The inverse of a linear function is linear.

• If S = {v1,v2, . . . ,vn} is a spanning set for V , then there exists B ⊆ S that is a basis
for V . Moreover, B can be found from S by iteratively eliminating vectors vk ∈ S that
can be written as a linear combination of vectors in S\{vk}.

• If S is a generating set for a vector space V and B is a finite linearly independent set
in V , then |B| ≤ |S|.

• If B1 and B2 are finite bases for a vector space V , then |B1| = |B2|.

• if S is a generating set for V , and |S| is smallest among all possible generating sets for
V , then S is a basis for V .

• If V is a finite-dimensional vector space, with dimV = n, and A ⊆ V is linearly
independent, then there exists a basis B for V with A ⊆ B.

• If V is a finite-dimensional vector space, with dimV = n, and A ⊆ V has |A| = n and
A is linearly independent, then A is a basis for V .

• (Rank Nullity Theorem v1) If f : V → W is a linear function, then

dim Ker (f) + dim Im (f) = dimV

• (Rank Nullity Theorem v2) If A is an m× n matrix, then

rankA+ nullityA = n.



• (Gram-Schmidt orthogonalization) Let B = {v1,v2, . . . ,vk} be a basis for a vector
space V . Let C = {w1,w2, . . . ,wk}, where

w1 = v1

w2 = v2 − Projw1
v2

· · ·
wk = vk − Projw1

vk − Projw2
vk − · · · − Projwk−1

vk

Then C is an orthogonal basis for V .

• If w = ProjW v is the projection of v onto a subspace W , then ‖v − w‖ is minimal
among all elements of W .

• Let A = UΣV T be a singular value decomposition for A, where U is m×m, Σ is m×n,
and V is n× n. Take the columns of V as v1, . . . ,vn, and the nonzero singular values
as σ1, . . . , σk. Then the vector space spanned by v1,v2, . . . ,vt is the best dimension t
approximation to the rows of A, in the sense that it minimizes

m∑
i=1

‖ai − ProjW ai‖2,

where the ai are the rows of A and the minimization is over all dimension t subspaces.

• Let A be a matrix with linearly independent columns. Then for any b, the least squares
solution x̂ to the equation Ax = b is given by (ATA)−1ATb.

• Let A be a matrix with linearly independent columns. Then for any b, the least squares
solution x̂ to the equation Ax = b satisfies Ax̂ = ProjColA b.



Practice Problems
First: problems from Exam 1 review, Exam 2 review, and both the midterms, as well as
homework.
For material presented since that time:

1. The vectors v1 =

 1
1
1

 and v2 =

 −2
4
−2

 are orthogonal in R3. Find a third vector

v3 that is orthogonal to both v1,v2, such that {v1,v2,v3} form a basis for R3.

2. Suppose v ∈ Span {u1,u2, . . . ,uk}, where the ui are orthonormal. Prove that v =
(v · u1)u1 + · · ·+ (v · uk)uk.

3. Let W =


 x
y
z

 ∈ R3 | y − 2z = 0

. Let v =

 2
2
5

. Calculate ProjW v.

4. Let v1,v2 be vectors in a vector space V , and let W be a subspace of V . Suppose that
ProjW v1 = ProjW v2. Must v1 = v2?

5. Let v1,v2 be vectors in a vector space V , and let W be a subspace of V . Suppose that
ProjW v1 = ProjW v2, and also ProjW⊥ v1 = ProjW⊥ v2. Must v1 = v2?

6. Find a singular value decomposition of the matrix A =

 1 1
−2 2
−1 −1

.

7. Let A =

[
1 2 3 4
−1 −2 −3 −4

]
. How many nonzero singular values does A have? How

do you know?

8. Show that every rank 1 matrix of dimension m × n can be uniquely represented as
cuvT , where u is a m× 1 vector with ‖u‖ = 1, and v is an n× 1 vector with ‖v‖ = 1.

9. Suppose U is a matrix with orthonormal columns. Show that ‖Ux‖ = ‖x‖ for all x for
which the product is defined.

10. A SVD for the matrix A is as follows (where we have rounded to 2 decimal places for
convenience):

A =

 .40 −.78 .47
.37 −.33 −.87
−.84 −.52 −.16

 7.10 0 0
0 3.10 0
0 0 0

 .3 −.51 −.81
.76 .64 −.12
.58 −.58 .58


Using this decomposition for A, answer the following (without doing ANY arithmetic):

(a) What is the rank of A?

(b) Find a basis for ColA. Find a basis for NullA.

(c) Find a unit vector v so that ‖Av‖ is maximal.



11. Suppose you have a collection of data {(ti, yi) | 1 ≤ i ≤ N}, where each ti, yi ∈ R,
and you would like to approximate these data with a function that takes the form
y ≈ f(t) = at2 + bt+ c. How would you set up a least squares problem to accomplish
your goal?

12. Suppose you wish to approximate a collection of data {(ti, yi) | 1 ≤ i ≤ N}, where
each ti, yi ∈ R, using least squares, with a horizontal line f(t) = c. What is c? Show
that your answer is correct.

13. The lines L1 =


 x
x
x

 ∈ R3

 and L2 =


 y

3y
−1

 ∈ R3

 do not intersect. Write

and solve a least squares problem to find the shortest line segment between these two
lines.

14. Why is ATA noninvertible when A has linearly dependent columns?

15. A university registrar keeps track of class attendance, measured as a percentage (so
100 means full attendance, and 30 means 30% of the students attend). For each class
lecture, she records the attendance y, and several features:

• x1 is the day of week, with Monday coded as 1 and Friday coded as 5.

• x2 is the week of the quarter, coded as 1 for the first week, and 10 for the last
week.

• x3 is the hour of the lecture, with 8AM coded as 8, and 4PM coded as 16.

• x4 = max{T − 80, 0}, where T is the outside temperature (so x4 is the number of
degrees above 80◦F ≈ 26.5◦C).

• x5 = max{50− T, 0}, where T is the outside temperature (so x5 is the number of
degrees below 50◦F ≈ 10◦C).

(These features were suggested by a professor who is an expert in the theory of class
attendance.) A 241 student carefully fits the data with the following least squares
regression model,

ŷ = −1.4x1 − 0.3x2 + 1.1x3 − 0.6x4 − 0.5x5 + 68.2,

and validates it properly. Give a short story/explanation, in English, of this model.

16. Carefully prove, in the case that A is an m × 2 matrix with linearly independent
columns, that A(ATA)−1ATb = ProjColA b.


