Math 241 Homework 1 Solution

Lizzi Yin

Problems are 5 pts each.

1. Problem 2.14 .4 (2pts 1 pt each)
1) c, d, e
2) b, c, d, e

Problem 2.14.7 (3pts 1pt each)
$v_{1}=\left[\begin{array}{llll}2 & 3 & -4 & 1\end{array}\right], v_{2}=\left[\begin{array}{llll}1 & -5 & 2 & 0\end{array}\right], v_{3}=\left[\begin{array}{llll}4 & 1 & -1 & -1\end{array}\right]$
2. Problem 3.8.4 (2 pts 1 pt each)
$v_{1}=\left[\begin{array}{lll}1 & 0 & a\end{array}\right], v_{2}=\left[\begin{array}{lll}0 & 1 & b\end{array}\right]$
(Any scalar multiples of v_{1} and v_{2} is also correct.)
Claim: for any set of points $v=[x, y, z]$ satisfying the equation $z=a x+b y$,
v can be written as a linear combination of v_{1} and v_{2}, aka $\exists c, d \in \mathbb{R}$ s.t.
$v=c v_{1}+d v_{2}$.
Proof: (-0.5 pt minor error $/-1 \mathrm{pt}$ major error)
Take $c=x \in \mathbb{R}$ and $d=y \in \mathbb{R}, c v_{1}=[x, 0, a x]$ and $d v_{2}=[0, y, b y]$, thus $c v_{1}+d v_{2}=[x+0,0+y, a x+b y]=[x, y, a x+b y]=[x, y, z]=v$.
Problem 3.8.5 (3pts 1pt each)
$v_{1}=\left[\begin{array}{lll}1 & 0 & a\end{array}\right], v_{2}=\left[\begin{array}{lll}0 & 1 & b\end{array}\right], v_{3}=\left[\begin{array}{lll}0 & 0 & c\end{array}\right]$
Proof is similar to Problem 3.8.4. (Point allocation same to previous)
3. Free 1 pt, 4 pts 1 pt each

Use Back Substitution because the system of linear equations is in upper
triangular form and $a_{k k} \neq 0, \forall k=1, \cdots, 4$.
We get $x_{1}=3, x_{2}=-1, x_{3}=\frac{1}{2}, x_{4}=-2$.
4. 0.031252 pts 0.2916671 .5 pts 0.401 .5 pts
$\mathbf{w}=\left[\begin{array}{llll}0.03125 & \cdots & 0.03125 & 0.35 \times \frac{100}{120}=\frac{7}{24}=0.2916666\end{array} \quad 0.40 \times \frac{100}{160}=\frac{1}{4}=0.25\right]$.
5. expanding 2 pts
$\mathrm{u}+\mathrm{v}=\mathrm{v}+\mathrm{u} 2 \mathrm{pts}$
citing commutativity of real numebrs 1 pt
Claim: $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ where $u, v \in \mathbb{R}^{n}$
Proof: Let $u=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right], v=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$.
Then $u+v=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]+\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]=\left[\begin{array}{c}u_{1}+v_{1} \\ u_{2}+v_{2} \\ \vdots \\ u_{n}+v_{n}\end{array}\right]$ by defn of vector addition
$=\left[\begin{array}{c}v_{1}+u_{1} \\ v_{2}+u_{2} \\ \vdots \\ v_{n}+u_{n}\end{array}\right]$ by commutativity of real numbers.
$=v+u$ by defn of vector addition.
6. $\mathrm{m}=2$ case 4 pts
larger m 1pt
For the case that $m=2$. Assume $b_{1}=d a_{1}+e a_{2}, b_{2}=f a_{1}+g a_{2}$, and $c=h b_{1}+i b_{2}$ where $d, e, f, g, h, i \in \mathbb{R}$. Then, $c=h b_{1}+i b_{2}=h *\left(d a_{1}+\right.$ $\left.e a_{2}\right)+i *\left(f a_{1}+g a_{2}\right)=(h * d+i * f) a_{1}+(h * e+i * g) a_{2}$. Since \mathbb{R} is closed under addition and multiplication, $h * d+i * f, h * e+i * g \in \mathbb{R}$, thus c is a linear combination of a_{1} and a_{2}.
Proof for larger m is similar to above.

