Math 241 Homework

Mary Radcliffe

Due 6 September 2018

Complete the following problems. Fully justify each response.

1. Complete problems 2.14.4, 2.14 .7 on page 111 of Coding the Matrix. (Note: Klein uses bitstrings to represent vectors over \mathbb{Z}_{2}. So for example, 0011 would denote the vector $\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$. .
2. Complete problems 3.8.4, 3.8.5 on page 146 of Coding the Matrix.
3. Use ideas discussed in class to solve the following upper triangular system of linear equations:

$$
\begin{aligned}
x_{1}+3 x_{2}-2 x_{3}+2 x_{4} & =-5 \\
3 x_{2}+4 x_{3}-x_{4} & =1 \\
2 x_{3}+x_{4} & =-1 \\
-5 x_{4} & =10
\end{aligned}
$$

4. (ALA Problem 1.10) The record for each student in a class is given as a 10 -vector \mathbf{r}, where $r_{1}, r_{2}, \ldots, r_{8}$ are the scores for the 8 homework assignments, each on a $0-10$ scale, r_{9} is the midterm exam grade on a $0-120$ scale, and r_{10} is the final exam score on a 0-160 scale. The student's total course score s, on a $0-100$ scale, is based on a weighted average of 25% homework, 35% midterm, and 40% final exam. Determine a vector w so that $s=\mathbf{w} \cdot \mathbf{r}$.
5. In lecture, we proved that vector addition is associative. Prove that vector addition is also commutative; that is, prove that $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$. For the purposes of this problem, you may assume that your vectors are over \mathbb{R}, and you may use standard arithmetic rules in \mathbb{R}.
6. (Similar to ALA Problem 1.18) Suppose that each of the vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}$ is a linear combination of the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$, and that \mathbf{c} is a linear combination of $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}$. Then \mathbf{c} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$. Show this for the case that $m=2$. Explain why it would also be true if m is larger. (The proof is not hard, but the notation is a mess)
7. Read through Coding the Matrix 2.9.4-2.9.7. Here, you will find a discussion of dot products over \mathbb{Z}_{2}, and how we can use \mathbb{Z}_{2} for authentication schema.
8. Complete the first problem set found at autolab.andrew.cmu.edu. The submission for this is directly on autolab, no need to hand it in on paper.
