21-241 Homework 3 Solutions

Taisuke Yasuda

September 26, 2018

1. (a) Note that since $H \mathbf{e} \neq 0$, e has at least one bit of error, so \mathbf{e} is a vector with exactly one 1 in index i and all other entries 0 . Then, $H \mathbf{e}$ is the linear combination of the columns of H where the i th column of H has coefficient 1 and the rest 0 s. In other words, H e is just the i th column of H. Note that $[1,1,0]$ is the 6 th column of H, so $\mathbf{e}=[0,0,0,0,0,1,0]$. ($1 \mathbf{p t}$ for correct answer)
(b) Let $\tilde{\mathbf{c}}=\mathbf{c}+\mathbf{e}$, where \mathbf{c} is the original message and \mathbf{e} is an error vector with at most one 1 . Then,

$$
H \tilde{\mathbf{c}}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=H(\mathbf{c}+\mathbf{e})=\mathbf{c}+H \mathbf{e}=0+H \mathbf{e}
$$

since \mathbf{c} is a codeword and thus in the null space of H. Then from part (a), we know that $\mathbf{e}=[0,0,0,0,0,1,0]$ so the original message is

$$
\mathbf{c}=\tilde{\mathbf{c}}-\mathbf{e}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right) .
$$

(1 pt for correctly computing $H \tilde{\mathbf{c}}, 1 \mathrm{pt}$ for finding e, 1 pt for subtracting e from $\tilde{\mathrm{c}}, 1 \mathrm{pt}$ for correct answer)
2. Note that for $x, y \in \mathbb{R}$,

$$
A\binom{x}{y}=\binom{x-2 y}{0}
$$

so $[x, y]$ is in the null space of A if and only if $A[x, y]=[x-2 y, 0]=[0,0]$, which happens if and only if $x-2 y=0$. Then, the null space is $\left\{[x, y] \in \mathbb{R}^{2}: x-2 y=0\right\}$, which is just the graph of the line $y=x / 2$.

Now using the same computation as before, we have that $[x, y]$ is a solution to $A[x, y]=\mathbf{b}=[3,0]$ if and only if $x-2 y=3$, so the null space is $\left\{[x, y] \in \mathbb{R}^{2}: x-2 y=3\right\}$, which is just the graph of the line $y=x / 2-3 / 2$.

(1 pt for graph of null space, 2 pts for justification for graph of null space, 1 pt for graph of solution set, 1 pt for justification for graph of solution set)
3. (a) Suppose that $\mathbf{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]$ belongs to the null space of A. Then, solving $A \mathbf{x}=0$ for $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ gives us that $x_{5}=-x_{6}, x_{4}=-x_{6}, x_{3}=0$, and $x_{1}=-2 x_{2}$. Thus, we may write

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)=\left(\begin{array}{c}
-2 x_{2} \\
x_{2} \\
0 \\
-x_{6} \\
-x_{6} \\
x_{6}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+x_{6}\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

Thus, the null space of A is contained in the span of $\mathbf{v}_{1}:=[-2,1,0,0,0,0]$ and $\mathbf{v}_{2}:=[0,0,0,-1,-1,1]$. On the other hand, note that $A \mathbf{v}_{1}=0$ and $A \mathbf{v}_{2}=0$. Then any vector $\mathbf{v}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$ in the span of \mathbf{v}_{1} and \mathbf{v}_{2} is in the null space of A since

$$
A \mathbf{v}=A\left(\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}\right)=\alpha A \mathbf{v}_{1}+\beta A \mathbf{v}_{2}=0+0=0
$$

Thus, the null space of A is exactly the span of \mathbf{v}_{1} and \mathbf{v}_{2}.
(1 pt for finding a valid span, 1 pt for showing that the null space is in the span, 1 pt for showing that the span is in the null space)
(b) By inspection, one solution is $\hat{\mathbf{x}}:=[-1,0,0,0,0,1]$. We now work on a expression for all solutions. Suppose x satisfies $A \mathbf{x}=\mathbf{b}$. Then note that $\mathbf{b}=A \hat{\mathbf{x}}$ and so by plugging into the above and rearranging, the above is true if and only if $A(\mathbf{x}-\hat{\mathbf{x}})=0$. Thus, \mathbf{x} solves $A \mathbf{x}=\mathbf{b}$ exactly when $\mathrm{x}-\hat{\mathbf{x}}$ belongs to the null space of A. Thus, if \mathcal{N} is the null space of A, then the set of solutions to $A \mathbf{x}=\mathbf{b}$ is exactly

$$
\left\{\mathbf{x} \in \mathbb{R}^{6}: A \mathbf{x}=\mathbf{b}\right\}=\left\{\mathbf{x} \in \mathbb{R}^{6}: \mathbf{x}-\hat{\mathbf{x}} \in \mathcal{N}\right\}=\{\hat{\mathbf{x}}+\mathbf{x}: \mathbf{x} \in \mathcal{N}\}=\hat{\mathbf{x}}+\mathcal{N} .
$$

(1 pt for finding a particular solution, 1 pt for characterizing the solution set)
4. - Exercise 4.10.7

We have that $g([0,0])=[0,0,1] \neq[0,0,0]$ so g is not linear. (2 pts for a correct counterexample)

- Exercise 4.10.8

The reflection about the y-axis preserves the y component and negates the x component, so we may write $h([x, y])=[-x, y]$. This function is linear since for a scalar $\alpha \in \mathbb{R}$ and a vector $[x, y] \in \mathbb{R}^{2}$

$$
h(\alpha[x, y])=h([\alpha x, \alpha y])=[-\alpha x, \alpha y]=\alpha[-x, y]=\alpha h([x, y])
$$

and for two vectors $\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right] \in \mathbb{R}^{2}$,

$$
\begin{aligned}
h\left(\left[x_{1}, y_{1}\right]+\left[x_{2}, y_{2}\right]\right) & =h\left(\left[x_{1}+x_{2}, y_{1}+y_{2}\right]\right)=\left[-\left(x_{1}+x_{2}\right), y_{1}+y_{2}\right] \\
& =\left[-x_{1}, y_{1}\right]+\left[-x_{2}, y_{2}\right]=h\left(\left[x_{1}, y_{1}\right]\right)+h\left(\left[x_{2}, y_{2}\right]\right) .
\end{aligned}
$$

(1 pt for correct $h, 1 \mathrm{pt}$ for showing property L1, 1 pt for showing property L2)
5. (a) Let $\alpha \in \mathbb{R}$ and let $p, q \in \mathcal{P}_{n}(\mathbb{R})$. Then, by basic rules of calculus,

$$
D(\alpha p(x))=\frac{d}{d x} \alpha p(x)=\alpha \frac{d}{d x} p(x)=\alpha D(p(x))
$$

and

$$
D(p(x)+q(x))=\frac{d}{d x} p(x)+q(x)=\frac{d}{d x} p(x)+\frac{d}{d x} q(x)=D(p(x))+D(q(x))
$$

so the function is linear. (1 pt for showing commutativity with scalar multiplication, 1 pt for showing commutativity with addition)
(b) Suppose p is in the kernel of D, i.e. $D(p(x))=\frac{d}{d x} p(x)=0$. Then in view of a theorem in calculus, functions whose derivatives are 0 on \mathbb{R} are exactly constant functions, so $D(p(x))=0$ if and only if $p(x)=c$ for some constant $c \in \mathbb{R}$. So, the kernel of D is just the set of all constant functions.
We claim that the range is exactly $\mathcal{P}_{n-1}(\mathbb{R})$, i.e. the map D is surjective. Indeed, suppose $p \in$ $\mathcal{P}_{n-1}(\mathbb{R})$. Then, we may write $p(x)$ as

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}=\sum_{i=0}^{n-1} a_{i} x^{i}
$$

Now define the polynomial

$$
q(x):=a_{0} x+\frac{a_{1}}{2} x^{2}+\cdots+a_{n-1} x^{n}=\sum_{i=0}^{n-1} \frac{a_{i}}{i+1} x^{i+1}=\sum_{i=1}^{n} \frac{a_{i-1}}{i} x^{i} .
$$

Clearly, q is a polynomial of degree at most n, so it belongs to $\mathcal{P}_{n}(\mathbb{R})$. Furthermore, its image under D, i.e. the derivative, is clearly p. We have shown that every element of $\mathcal{P}_{n-1}(\mathbb{R})$ has an element in $\mathcal{P}_{n}(\mathbb{R})$ that maps to it via D, so D is surjective and thus the range is exactly $\mathcal{P}_{n-1}(\mathbb{R})$. (1 pt for characterizing the kernel, 2 pts for characterizing the range)
6. Suppose f is linear. We prove the given formula by inducting on $k \geq 2$. For $k=2$, the formula holds since

$$
f\left(a_{1} v_{1}+a_{2} v_{2}\right)=f\left(a_{1} v_{1}\right)+f\left(a_{2} v_{2}\right)=a_{1} f\left(v_{1}\right)+a_{2} f\left(v_{2}\right)
$$

where in the first equality we use property L2 of linear functions and in the second equality we use property L1 of linear functions. Now assume the formula holds for $k-1$. Then,

$$
\begin{aligned}
f\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{k} v_{k}\right) & =f\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{k-1} v_{k-1}\right)+f\left(a_{k} v_{k}\right) & & \text { by property L2 } \\
& =f\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{k-1} v_{k-1}\right)+a_{k} f\left(v_{k}\right) & & \text { by property L1 } \\
& =\left[a_{1} f\left(v_{1}\right)+a_{2} f\left(v_{2}\right)+\cdots+a_{k-1} f\left(v_{k-1}\right)\right]+a_{k} f\left(v_{k}\right) & & \text { by inducting }
\end{aligned}
$$

so the formula holds for k.
Now suppose the formula holds for some fixed $k \geq 2$. We need to show that f satisfies properties L1 and L2. Let $v \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$. Then since the formula holds for any a_{i} and v_{i}, we can in particular
choose $v_{1}:=v, a_{1}:=\alpha$, and $v_{i}=0$ and $a_{i}=0$ for every $2 \leq i \leq k$, and the formula will still hold. Then,

$$
\begin{aligned}
f(\alpha v) & =f\left(a_{1} v_{1}+0+0+\cdots+0\right)=f\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{k} v_{k}\right) \\
& =a_{1} f\left(v_{1}\right)+a_{2} f\left(v_{2}\right)+\cdots+a_{k} f\left(v_{k}\right)=\alpha f(v)+0+\cdots+0
\end{aligned}
$$

so f has property L1. Next, let $u, v \in \mathbb{R}^{n}$. Then, set $v_{1}:=u, v_{2}:=v, a_{1}:=1, a_{2}:=1$, and set all the other vectors and coefficients to $a_{i}=0, v_{i}=0$ for $2<i \leq k$. Then,

$$
\begin{aligned}
f(u+v) & =f\left(a_{1} v_{1}+a_{2} v_{2}+0+0+\cdots+0\right)=f\left(a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+\cdots+a_{k} v_{k}\right) \\
& =a_{1} f\left(v_{1}\right)+a_{2} f\left(v_{2}\right)+a_{3} f\left(v_{3}\right)+\cdots+a_{k} f\left(v_{k}\right)=f\left(v_{1}\right)+f\left(v_{2}\right)+0+\cdots+0
\end{aligned}
$$

so f has property L2. Thus, f is linear. (2 pts for showing that linear implies formula, 3 pts for showing the formula implies linear)

