21-241 Homework 4

Maxwell Aires

October 2018

Problem 1

Problem 4.17.8

1. $A B=\left[\begin{array}{cc}1 & a+b \\ 0 & 1\end{array}\right]$
2. $A^{n}=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$

Problem 4.17.9

a) $A B=\left[\begin{array}{llll}0 & 0 & 2 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 6 & 0\end{array}\right] \quad B A=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 4 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
b) $A B=\left[\begin{array}{cccc}0 & 2 & -1 & 0 \\ 0 & 5 & 3 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 6 & -5 & 0\end{array}\right] \quad B A=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 1 & 5 & -2 & 3 \\ 0 & 0 & 0 & 0 \\ 4 & 4 & 4 & 0\end{array}\right]$
c) $A B=\left[\begin{array}{llll}6 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 \\ 8 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0\end{array}\right] \quad B A=\left[\begin{array}{lllc}4 & 2 & 1 & -1 \\ 4 & 2 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
d) $A B=\left[\begin{array}{cccc}0 & 3 & 0 & 4 \\ 0 & 4 & 0 & 1 \\ 0 & 4 & 0 & 4 \\ 0 & -6 & 0 & -1\end{array}\right] \quad B A=\left[\begin{array}{cccc}0 & 11 & 0 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 5 & -2 & 3\end{array}\right]$
e) $A B=\left[\begin{array}{cccc}0 & 3 & 0 & 8 \\ 0 & -9 & 0 & 2 \\ 0 & 0 & 0 & 8 \\ 0 & 15 & 0 & -2\end{array}\right] \quad B A=\left[\begin{array}{cccc}-2 & 12 & 4 & -10 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -3 & -15 & 6 & -9\end{array}\right]$
f) $A B=\left[\begin{array}{cccc}-4 & 4 & 2 & -3 \\ -1 & 10 & -4 & 9 \\ -4 & 8 & 8 & 0 \\ 1 & 12 & 4 & -15\end{array}\right] \quad B A=\left[\begin{array}{cccc}-4 & -2 & -1 & 1 \\ 2 & 10 & -4 & 6 \\ 8 & 8 & 8 & 0 \\ -3 & 18 & 6 & -15\end{array}\right]$

Problem 2

a) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. This transformation is injective and surjective, since the matrix is invertible (permuting two rows gives I_{2}. Alternatively, observe that for any reflection, no two points will be mapped to the same point
(injective), and that any point is the reflection of its own reflection (surjective).
b) $A=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$. This transformation is injective and surjective, for the same reasons as in part (a).
c) $A=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$. This transformation is not injective; observe that $f([0,0])=f([1,-1])$. Similary, the transformation is not surjective, as the image only contains points on the line $x=y$.

Problem 3

Recall that $(A B)_{j, i}=\sum_{k=1}^{n}(A)_{j k}(B)_{k i}$. Let C be the $j^{\text {th }}$ row of A; then $(C)_{1, i}=(A)_{j, i}$. So $(C B)_{1, i}=$ $\sum_{k=1}^{n}(C)_{1, k}(B)_{k, i}=\sum_{k=1}^{n}(A)_{j, k}(B)_{k, i}=(A B)_{j, i}$. So the $C B$ is in fact the $j^{\text {th }}$ row of $A B$, as desired.

Problem 4

The statement is not true; to see this, take $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, and let $B=I_{2}$ and $C=-I_{2}$. Then clearly $B \neq C$, but $A B=A=A C$, a contradiction.

If we add the hypothesis that A is invertible, then the statement will be true. To see this, observe that

$$
A B=A C \Longrightarrow A^{-1}(A B)=A^{-1}(A C) \Longrightarrow\left(A^{-1} A\right) B=\left(A^{-1} A\right) C \Longrightarrow I B=I C \Longrightarrow B=C
$$

Problem 5

First, recall that $(A B)^{T}=B^{T} A^{T}$. So we have

$$
I=I^{T}=\left(A^{-1} A\right)^{T}=A^{T}\left(A^{-1}\right)^{T}
$$

Similarly,

$$
I=I^{T}=\left(A A^{-1}\right)^{T}=\left(A^{-1}\right)^{T} A^{T}
$$

So we see that $B=\left(A^{-1}\right)^{T}$ satisfies both $B A^{T}=I$ and $A^{T} B=I$. Therefore, A^{T} is in fact invertible, and its inverse is $\left(A^{-1}\right)^{T}$.

Problem 6

First, if $a d-b c \neq 0$, then observe that $B=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ is an inverse, so the matrix is invertible.
Now suppose $a d-b c=0$. By problem 10 on the review sheet, we see that $\operatorname{Null}(A)$ is non-trivial. So the function $f(x)=M x$ is not one-to-one; hence A is not invertible.
Note: There are many other ways to approach this problem, such as casework on whethere a is 0 or not, and using row-reduction.

