Math 241 Homework

Mary Radcliffe

Due 4 October 2018

Complete the following problems. Fully justify each response.

1. Complete problems 4.17.8-9 on page 208-209 of Coding the Matrix.
2. Find the standard matrix for each of the following linear transformations from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Determine if each transformation is injective, surjective, both or neither. Explain your response.
(a) Reflection over the line $y=x$
(b) Reflection over the line $y=-x$
(c) Projection onto the line $y=x$
3. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Prove that the $j^{\text {th }}$ row of $A B$ is the product of the $j^{\text {th }}$ row of A (viewed as a $1 \times n$ matrix) with B.
4. Determine if the following statement is true or false:

Let A, X, Y be $n \times n$ matrices, satisfying $A X=A Y$. Then $X=Y$.

If the statement is true, prove it. If the statement is false, give an example showing why, and add a hypothesis that would make it true.
5. Suppose A is an invertible matrix. Prove that A^{T} is also invertible, and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}\left(\right.$ this is sometimes denoted by $\left.A^{-T}\right)$.
6. Prove that a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible if and only if $a d-b c \neq$ 0 . (Hint: you can do this by demonstrating an inverse).
7. Complete the fourth problem set found at autolab. andrew.cmu.edu. The submission for this is directly on autolab, no need to hand it in on paper.

