Mary Radcliffe Math 241 Homework 7 Solution

Anika Li

Due 25 October 2018

Complete the following problems. Fully justify each response.

1. Calculate each of the following determinants:
(a) $\operatorname{det}\left(\left[\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right]\right)=2 * 1-3 *(-1)=2+3=5$
(b) $\operatorname{det}\left(\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 0\end{array}\right]\right)$
$=1 * \operatorname{det}\left(\left[\begin{array}{cc}1 & 0 \\ 1 & 0\end{array}\right]\right)-2 * \operatorname{det}\left(\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]\right)+(-1) * \operatorname{det}\left(\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]\right)$
$=1 * 0-2 * 0-1 * 2=-2$
(2.5 each, 5 in total)
2. Prove that the determinant of an upper triangular matrix is equal to the product of the diagonal entries of the matrix.
Prove by Induction: induce on the dimension of the upper triangular matrix $n x n$.
BC: $n=1: \operatorname{det}([a])=a \checkmark$
$\mathrm{n}=2: \operatorname{det}\left(\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]\right)=a * c-b * 0=a * c \checkmark$
IH : the determinant of an $(n-1) *(n-1)$ upper triangular matrix is equal to the product of the diagonal entries of the matrix.
IS: NTS the claim holds for an $n * n$ upper triangular matrix. Let A be an $n * n$ upper triangular matrix:

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & . . & . . & a_{1 n} \\
0 & a_{22} & . . & . . & a_{2 n} \\
0 & 0 & a_{33} & . . & . . \\
0 & 0 & . . & . . & a_{n n}
\end{array}\right] \\
& \operatorname{det}(A)=a_{11} * \operatorname{det}\left(\left[\begin{array}{ccc}
a_{22} & a_{23} & . . \\
0 & a_{33} & . . \\
a_{2 n} \\
. . & . . & a_{3 n} \\
0 & 0 & . . \\
. . & a_{n n}
\end{array}\right]\right)+a_{12} * \operatorname{det}\left(\left[\begin{array}{ccc}
0 & a_{23} & . . \\
0 & a_{33} & . . \\
a_{2 n} \\
. & . . & . . \\
0 & . . & . . \\
0 & a_{n n}
\end{array}\right]\right)+ \\
& \ldots+a_{1 n} * \operatorname{det}\left(\left[\begin{array}{cccc}
0 & a_{22} & . . & a_{2(n-1)} \\
0 & 0 & . . & a_{3(n-1)} \\
. . & . . & . . & . . \\
0 & . . & . . & a_{n(n-1)}
\end{array}\right]\right) \\
& =a_{11} *\left(a_{22} * a_{33} * \ldots * a_{n n}\right)+a_{12} * 0+\ldots+a_{1 n} * 0 \text { by IH } \\
& =a_{11} * a_{22} * a_{33} * \ldots * a_{n n} \checkmark \\
& \text { Therefore, the determinant of an upper triangular matrix is equal to the } \\
& \text { product of the diagonal entries of the matrix. }
\end{aligned}
$$

(1 for base case, 1 for IH, 3 for IS)
3. Complete problems $12.14 .2,12.14 .3,12.14 .9$ on pages $483-485$ in Coding the Matrix.
12.14.2:
(a) $\left[\begin{array}{cc}7 & -4 \\ 2 & 1\end{array}\right]-\lambda_{1} I=\left[\begin{array}{cc}7-5 & -4 \\ 2 & 1-5\end{array}\right]=\left[\begin{array}{ll}2 & -4 \\ 2 & -4\end{array}\right]$
$\Rightarrow 2 x_{1}-4 x_{2}=0 \Rightarrow x_{1}=2 x_{2} \Rightarrow v_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
$\left[\begin{array}{cc}7 & -4 \\ 2 & 1\end{array}\right]-\lambda_{2} I=\left[\begin{array}{cc}7-3 & -4 \\ 2 & 1-3\end{array}\right]=\left[\begin{array}{ll}4 & -4 \\ 2 & -2\end{array}\right]$
$\Rightarrow 2 x_{1}-2 x_{2}=0 \Rightarrow 2 x_{1}=x_{2} \Rightarrow v_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(0.5 point for each eigenvector, 1 point in total)
(b) $\left[\begin{array}{lll}4 & 0 & 0 \\ 2 & 0 & 3 \\ 0 & 1 & 2\end{array}\right]-\lambda_{1} I=\left[\begin{array}{ccc}4-3 & 0 & 0 \\ 2 & 0-3 & 3 \\ 0 & 1 & 2-3\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & -3 & 3 \\ 0 & 1 & -1\end{array}\right]$
$\Rightarrow x_{1}=0,2 x_{1}-3 x_{2}+3 x_{3}=0, x_{2}-x_{3}=0$
$\Rightarrow x_{1}=0, x_{2}=x_{3}$
$\Rightarrow v_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
$\left[\begin{array}{ccc}4 & 0 & 0 \\ 2 & 0 & 3 \\ 0 & 1 & 2\end{array}\right]-\lambda_{2} I=\left[\begin{array}{ccc}4+1 & 0 & 0 \\ 2 & 0+1 & 3 \\ 0 & 1 & 2+1\end{array}\right]=\left[\begin{array}{lll}5 & 0 & 0 \\ 2 & 1 & 3 \\ 0 & 1 & 3\end{array}\right]$
$\Rightarrow 5 x_{1}=0,2 x_{1}+x_{2}+3 x_{3}=0, x_{2}+3 x_{3}=0$
$\Rightarrow x_{1}=0, x_{2}=-3 x_{3}$
$\Rightarrow v_{2}=\left[\begin{array}{c}0 \\ -3 \\ 1\end{array}\right]$
(0.5 point for each eigenvector, 1 point in total)
12.14.3:
(a) $A v_{1}=\lambda_{1} v_{1}$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=-1\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right] \Rightarrow \lambda_{1}=-1 \\
& \Rightarrow\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 \\
10
\end{array}\right]=5\left[\begin{array}{l}
1 \\
2
\end{array}\right] \Rightarrow \lambda_{2}=5
\end{aligned}
$$

(0.5 point for each eigenvalue, 1 point in total)
(b) $A v_{1}=\lambda_{1} v_{1}$
$\Rightarrow\left[\begin{array}{ll}5 & 0 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]=2\left[\begin{array}{l}0 \\ 1\end{array}\right] \Rightarrow \lambda_{1}=2$
$A v_{2}=\lambda_{2} v_{2}$
$\Rightarrow\left[\begin{array}{ll}5 & 0 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}3 \\ 1\end{array}\right]=\left[\begin{array}{c}15 \\ 5\end{array}\right]=5\left[\begin{array}{l}3 \\ 1\end{array}\right] \Rightarrow \lambda_{2}=5$
(0.5 point for each eigenvalue, 1 point in total)
12.14 .9

Let v_{i} be the eigenvector correspond to the eigenvalue λ_{i}
For an arbitrary v_{i}
$(A-k I) v_{i}=A v_{i}-k I v_{i}=A v_{i}-k v_{i}=\lambda_{i} v_{i}-k v_{i}=\left(\lambda_{i}-k\right) v_{i}$
Thus the eigenvalues of $A-k I$ are $\lambda_{i}-k, i=1, \ldots, m$ (1 point)
4. Suppose that λ is an eigenvalue of the invertible matrix A having a corresponding eigenvector \mathbf{v}. Prove that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}. What is a
corresponding eigenvector?

$$
\begin{aligned}
A v & =\lambda v \\
A^{-1} A v & =A^{-1} \lambda v \\
v & =A^{-1} \lambda v \\
\frac{1}{\lambda} v & =A^{-1} v
\end{aligned}
$$

v is the corresponding eigenvector
(4 points for the proof, 1 points for the corresponding eigenvector)
5. Use the previous problem to prove that a square matrix A is invertible if and only if 0 is not an eigenvalue of A.
(\Rightarrow) AFSOC 0 is an eigenvalue of A
Since A is invertible, from Problem 4, we know that $\frac{1}{0}$ is an eigenvalue for A^{-1}, which is a contradiction.
(\Leftarrow) If 0 is not an eigenvalue of A, there isn't a trivial solution that $A v=$ $0 v=0$, so A is invertible
(2.5 for each direction, 5 in total)
6. Complete the problem set found at autolab.andrew.cmu.edu. The submission for this is directly on autolab, no need to hand it in on paper.

