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Recall the following extremely useful lemmas given in class:

Lemma 1 (Basis completion). If V is a finite-dimensional vector space and S ⊆ V is linearly independent, then
there exists a basis B for V with B ⊇ S.

Lemma 2 (Basis extraction). If S is finite and span(S) = V , then there exists a basis B ⊆ S for V .

Here are two extremely useful corollaries. Try first to prove them on your own! They are excellent
practice problems and the proofs are very simple. I’ve also provided a proof at the end of these notes for
your reference.

Corollary 3. If U is a subspace of V , then dimU ≤ dimV .

Corollary 4. Let V be a vector space of dimension n and let S ⊆ V be a linearly independent set of size n. Then
S is a basis of V . In particular, span(S) = V .

1. Suppose for contradiction that S is linearly independent. Then by lemma 1, we can find a basis B ⊇ S
for V , so the dimension of V is

dimV = |B| ≥ |S| = n+ 1

which contradicts that dimV = n.

(5 pts for a correct proof)

2. Let v ∈ null(B), so Bv = 0. Then by multiplying both sides by A, we see that ABv = 0 so v ∈
null(AB). Thus, null(B) ⊆ null(AB). By lemma 3, dim(null(B)) ≤ dim(null(AB)). Now by the
rank-nullity theorem, we have

rank(B) + dim(null(B)) = rank(AB) + dim(null(AB)) ≥ rank(AB) + dim(null(B))

so rank(B) ≥ rank(AB). Equality is achieved for example by setting A = B = 1 in which case

rank(1) = rank(AB) = rank(B).

However, equality is not achieved if we set

A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
in which case

rank

(
0 0
0 0

)
= rank(AB) = 0 < 1 = dim

(
span

((
0
1

)))
= dim(col(B)) = rank(B).

(3 pts for correct proof, 1 pt for example of equality, 1 pt for example of equality not achieved)

3. (a) True. We have 5 vectors in 3 dimensions, so homework 6 problem 1 tells us that they are linearly
dependent.

(b) True, since we may find a basis B ⊆ S by lemma 2, which means dimV = |B| ≤ |S| = n.
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(c) False. Consider V = R2 and B = {e1}. Certainly, B is linearly independent with n = 1, but
dimV = 2.

(d) True, since we then have more column vectors than there are dimensions of the column vectors,
so homework 6 problem 1 again applies.

(e) False. Consider

A =

(
1
0

)
.

Then if x ∈ null(A) ⊆ R, then

Ax =

(
1
0

)
x =

(
x
0

)
=

(
0
0

)
so x = 0 and thus the null space is trivial.

(1 pt for each correct justification)

4. We will explicitly construct one such f . Let V := {v1, . . . ,vn} and W := {w1, . . . ,wn} be bases for V
and W , respectively. Then we define the image of v ∈ V under f as follows. Let v =

∑n
i=1 αivi be

the unique expansion of v in the basis V. Then, we define f(v) =
∑n

i=1 αiwi. Note that this map is
well-defined since α is well-defined (uniquely determined).

We first show that f is injective. Let f(u1) = f(u2). Then, letting u1 =
∑n

i=1 αivi and u2 =
∑n

i=1 βivi

n∑
i=1

αiwi =

n∑
i=1

βiwi =⇒
n∑

i=1

(αi − βi)wi = 0 =⇒ α− β = 0 =⇒ α = β

=⇒ u1 =

n∑
i=1

αivi =

n∑
i=1

βivi = u2.

Next, we show that f is surjective. Let w =
∑n

i=1 αiwi ∈ W be an arbitrary vector of W uniquely
expanded in the basisW. Then clearly, v :=

∑n
i=1 αivi is a vector in V that maps to w under f . Thus,

we conclude that f is invertible.

Finally, we show that f is linear. If we represent u1, u2 ∈ V uniquely as

u1 =

n∑
i=1

αivi, u2 =

n∑
i=1

βivi,

then for any scalars c1, c2 ∈ F,

f(c1u1 + c2u2) = f

(
c1

n∑
i=1

αivi + c2

n∑
i=1

βivi

)
= f

(
n∑

i=1

(c1αi + c2βi)vi

)

=

n∑
i=1

(c1αi + c2βi)wi =

n∑
i=1

c1αiwi +

n∑
i=1

c2βiwi = c1f(u1) + c1f(u2)

so by homework 3 problem 6, f is linear.

(2 pts for construction of f , 1 pt for showing injectivity, 1 pt for showing surjectivity, 1 pt for
showing linearity)

5. Let A ∈ Fm×n be an invertible matrix. Since A is surjective onto Fm, its rank is m. On the other hand,
it’s injective so its kernel is trivial and thus the nullity is 0. Finally, the dimension of the domain is n,
so by the rank-nullity theorem, m+ 0 = n, as desired.

(4 pts for any proof, 1 pt for using the rank-nullity theorem)

6. Here are some cool corollaries of the rank-nullity theorem:
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• Homework 6 problem 2.

• Consider a k-dimensional hyperplane H in Rn. Recall that we may view this hyperplane as the
solution set to some homogenous linear equations, i.e. H = null(A) where A is the matrix of
the linear equations. Then by the rank-nullity theorem, we know that if the homogeneous linear
equations are linearly independent, then the number of equations is n− k.

• Homework 6 problem 5.

• Corollary of homework 6 problem 5: all bases of Fn have the same cardinality (alternate proof,
might be circular but whatever). Indeed, putting the basis vectors in the columns of a matrix A
clearly creates an injective and surjective linear map with n rows, since the basis vectors are in
Fn. Thus, A is an invertible map with n rows, so A must have n columns and thus there must be
n basis vectors.

• Quick proof that a matrix is injective: we can quickly check whether a matrix is injective or
not. Before this theorem, we first reduced A to upper triangular form A′ and then checked for
the dimension of the kernel by solving A′x = 0. Now, we just count the number of linearly
independent columns of A′, subtract from n, and bam we’re done.

• A generalization of homework 6 problem 5: any two of the three following conditions implies the
remaining condition:

(a) A ∈ Rn×n

(b) the linear map corresponding to A is injective
(c) the linear map corresponding to A is surjective

Homework 6 problem 5 shows that (b) and (c) implies (a). If we have (a) and (c), then n +
dim(null(A)) = n so dim(null(A)) = 0. Then, the kernel must be trivial and thus we have (b).
If we have (a) and (b), then rank(A) + 0 = n. Then by corollary 4, col(A) = Fn, the entire
codomain, so we have (c).

(approximately 1 pt for each reason)

Proof of Corollaries

Proof of corollary 3. Let S be a basis of U . Then by lemma 1, we may find a basis B of V such that B ⊇ S.
Thus,

dimU = |S| ≤ |B| = dimV

as desired.

Proof of corollary 4. Let B ⊇ S be the basis given to us by lemma 1. Then,

n = |S| ≤ |B| = n

and S ⊆ B, so it must be that S = B and thus S is a basis.
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