21-241 Homework 6 Solutions

Taisuke Yasuda

October 20, 2018

Recall the following extremely useful lemmas given in class:
Lemma 1 (Basis completion). If V is a finite-dimensional vector space and $S \subseteq V$ is linearly independent, then there exists a basis \mathcal{B} for V with $\mathcal{B} \supseteq S$.

Lemma 2 (Basis extraction). If S is finite and $\operatorname{span}(S)=V$, then there exists a basis $\mathcal{B} \subseteq S$ for V.
Here are two extremely useful corollaries. Try first to prove them on your own! They are excellent practice problems and the proofs are very simple. I've also provided a proof at the end of these notes for your reference.

Corollary 3. If U is a subspace of V, then $\operatorname{dim} U \leq \operatorname{dim} V$.
Corollary 4. Let V be a vector space of dimension n and let $S \subseteq V$ be a linearly independent set of size n. Then S is a basis of V. In particular, $\operatorname{span}(S)=V$.

1. Suppose for contradiction that S is linearly independent. Then by lemma 1, we can find a basis $\mathcal{B} \supseteq S$ for V, so the dimension of V is

$$
\operatorname{dim} V=|\mathcal{B}| \geq|S|=n+1
$$

which contradicts that $\operatorname{dim} V=n$.
(5 pts for a correct proof)
2. Let $\mathbf{v} \in \operatorname{null}(B)$, so $B \mathbf{v}=0$. Then by multiplying both sides by A, we see that $A B \mathbf{v}=0$ so $\mathbf{v} \in$ $\operatorname{null}(A B)$. Thus, $\operatorname{null}(B) \subseteq \operatorname{null}(A B)$. By lemma 3, $\operatorname{dim}(\operatorname{null}(B)) \leq \operatorname{dim}(\operatorname{null}(A B))$. Now by the rank-nullity theorem, we have

$$
\operatorname{rank}(B)+\operatorname{dim}(\operatorname{null}(B))=\operatorname{rank}(A B)+\operatorname{dim}(\operatorname{null}(A B)) \geq \operatorname{rank}(A B)+\operatorname{dim}(\operatorname{null}(B))
$$

so $\operatorname{rank}(B) \geq \operatorname{rank}(A B)$. Equality is achieved for example by setting $A=B=1$ in which case

$$
\operatorname{rank}(1)=\operatorname{rank}(A B)=\operatorname{rank}(B) .
$$

However, equality is not achieved if we set

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

in which case

$$
\operatorname{rank}\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\operatorname{rank}(A B)=0<1=\operatorname{dim}\left(\operatorname{span}\left(\binom{0}{1}\right)\right)=\operatorname{dim}(\operatorname{col}(B))=\operatorname{rank}(B) .
$$

(3 pts for correct proof, 1 pt for example of equality, 1 pt for example of equality not achieved)
3. (a) True. We have 5 vectors in 3 dimensions, so homework 6 problem 1 tells us that they are linearly dependent.
(b) True, since we may find a basis $\mathcal{B} \subseteq S$ by lemma 2, which means $\operatorname{dim} V=|\mathcal{B}| \leq|S|=n$.
(c) False. Consider $V=\mathbb{R}^{2}$ and $B=\left\{\mathbf{e}_{1}\right\}$. Certainly, B is linearly independent with $n=1$, but $\operatorname{dim} V=2$.
(d) True, since we then have more column vectors than there are dimensions of the column vectors, so homework 6 problem 1 again applies.
(e) False. Consider

$$
A=\binom{1}{0}
$$

Then if $x \in \operatorname{null}(A) \subseteq \mathbb{R}$, then

$$
A x=\binom{1}{0} x=\binom{x}{0}=\binom{0}{0}
$$

so $x=0$ and thus the null space is trivial.

(1 pt for each correct justification)

4. We will explicitly construct one such f. Let $\mathcal{V}:=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ and $\mathcal{W}:=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ be bases for V and W, respectively. Then we define the image of $\mathbf{v} \in V$ under f as follows. Let $\mathbf{v}=\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}$ be the unique expansion of \mathbf{v} in the basis \mathcal{V}. Then, we define $f(\mathbf{v})=\sum_{i=1}^{n} \alpha_{i} \mathbf{w}_{i}$. Note that this map is well-defined since α is well-defined (uniquely determined).
We first show that f is injective. Let $f\left(\mathbf{u}_{1}\right)=f\left(\mathbf{u}_{2}\right)$. Then, letting $\mathbf{u}_{1}=\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}$ and $\mathbf{u}_{2}=\sum_{i=1}^{n} \beta_{i} \mathbf{v}_{i}$

$$
\begin{aligned}
\sum_{i=1}^{n} \alpha_{i} \mathbf{w}_{i}=\sum_{i=1}^{n} \beta_{i} \mathbf{w}_{i} & \Longrightarrow \sum_{i=1}^{n}\left(\alpha_{i}-\beta_{i}\right) \mathbf{w}_{i}=0 \Longrightarrow \alpha-\beta=0 \Longrightarrow \alpha=\beta \\
& \Longrightarrow \mathbf{u}_{1}=\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}=\sum_{i=1}^{n} \beta_{i} \mathbf{v}_{i}=\mathbf{u}_{2}
\end{aligned}
$$

Next, we show that f is surjective. Let $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} \mathbf{w}_{i} \in W$ be an arbitrary vector of W uniquely expanded in the basis \mathcal{W}. Then clearly, $\mathbf{v}:=\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}$ is a vector in V that maps to \mathbf{w} under f. Thus, we conclude that f is invertible.
Finally, we show that f is linear. If we represent $u_{1}, u_{2} \in V$ uniquely as

$$
\mathbf{u}_{1}=\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}, \quad \mathbf{u}_{2}=\sum_{i=1}^{n} \beta_{i} \mathbf{v}_{i}
$$

then for any scalars $c_{1}, c_{2} \in \mathbb{F}$,

$$
\begin{aligned}
f\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}\right) & =f\left(c_{1} \sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}+c_{2} \sum_{i=1}^{n} \beta_{i} \mathbf{v}_{i}\right)=f\left(\sum_{i=1}^{n}\left(c_{1} \alpha_{i}+c_{2} \beta_{i}\right) \mathbf{v}_{i}\right) \\
& =\sum_{i=1}^{n}\left(c_{1} \alpha_{i}+c_{2} \beta_{i}\right) \mathbf{w}_{i}=\sum_{i=1}^{n} c_{1} \alpha_{i} \mathbf{w}_{i}+\sum_{i=1}^{n} c_{2} \beta_{i} \mathbf{w}_{i}=c_{1} f\left(\mathbf{u}_{1}\right)+c_{1} f\left(\mathbf{u}_{2}\right)
\end{aligned}
$$

so by homework 3 problem $6, f$ is linear.

(2 pts for construction of $f, 1 \mathrm{pt}$ for showing injectivity, 1 pt for showing surjectivity, 1 pt for showing linearity)

5. Let $A \in \mathbb{F}^{m \times n}$ be an invertible matrix. Since A is surjective onto \mathbb{F}^{m}, its rank is m. On the other hand, it's injective so its kernel is trivial and thus the nullity is 0 . Finally, the dimension of the domain is n, so by the rank-nullity theorem, $m+0=n$, as desired.
(4 pts for any proof, 1 pt for using the rank-nullity theorem)
6. Here are some cool corollaries of the rank-nullity theorem:

- Homework 6 problem 2.
- Consider a k-dimensional hyperplane \mathcal{H} in \mathbb{R}^{n}. Recall that we may view this hyperplane as the solution set to some homogenous linear equations, i.e. $\mathcal{H}=\operatorname{null}(A)$ where A is the matrix of the linear equations. Then by the rank-nullity theorem, we know that if the homogeneous linear equations are linearly independent, then the number of equations is $n-k$.
- Homework 6 problem 5.
- Corollary of homework 6 problem 5: all bases of \mathbb{F}^{n} have the same cardinality (alternate proof, might be circular but whatever). Indeed, putting the basis vectors in the columns of a matrix A clearly creates an injective and surjective linear map with n rows, since the basis vectors are in \mathbb{F}^{n}. Thus, A is an invertible map with n rows, so A must have n columns and thus there must be n basis vectors.
- Quick proof that a matrix is injective: we can quickly check whether a matrix is injective or not. Before this theorem, we first reduced A to upper triangular form A^{\prime} and then checked for the dimension of the kernel by solving $A^{\prime} x=0$. Now, we just count the number of linearly independent columns of A^{\prime}, subtract from n, and bam we're done.
- A generalization of homework 6 problem 5: any two of the three following conditions implies the remaining condition:
(a) $A \in \mathbb{R}^{n \times n}$
(b) the linear map corresponding to A is injective
(c) the linear map corresponding to A is surjective

Homework 6 problem 5 shows that (b) and (c) implies (a). If we have (a) and (c), then $n+$ $\operatorname{dim}(\operatorname{null}(A))=n \operatorname{so} \operatorname{dim}(\operatorname{null}(A))=0$. Then, the kernel must be trivial and thus we have (b). If we have (a) and (b), then $\operatorname{rank}(A)+0=n$. Then by corollary $4, \operatorname{col}(A)=\mathbb{F}^{n}$, the entire codomain, so we have (c).

(approximately 1 pt for each reason)

Proof of Corollaries

Proof of corollary 3. Let S be a basis of U. Then by lemma 1, we may find a basis B of V such that $B \supseteq S$. Thus,

$$
\operatorname{dim} U=|S| \leq|B|=\operatorname{dim} V
$$

as desired.
Proof of corollary 4. Let $\mathcal{B} \supseteq S$ be the basis given to us by lemma 1. Then,

$$
n=|S| \leq|B|=n
$$

and $S \subseteq \mathcal{B}$, so it must be that $S=\mathcal{B}$ and thus S is a basis.

