Math 241 Homework

Mary Radcliffe

Due 18 October 2018

Complete the following problems. Fully justify each response.

1. Let V be a vector space of dimension n. Prove that if $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n+1}\right\}$, then S is linearly dependent.
2. Let A and B be $n \times n$ matrices. Prove that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$. Give an example to show that equality can hold. Give an example to show that equality may not hold.
3. Mark each of the following as true or false. Give a reason for your answer.
(a) If A is a 3×5 matrix, then the columns of A must be linearly dependent.
(b) If V is a vector space, and $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ spans V, then $\operatorname{dim} V \leq n$.
(c) If V is a vector space, and $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent subset of V, then $\operatorname{dim} V \leq n$.
(d) If A has more columns than rows, then $\operatorname{Null}(A)$ is nontrivial.
(e) If A has more rows than columns, then $\operatorname{Null}(A)$ is nontrivial.
4. Suppose that V and W are both vector spaces of dimension n over the field F. Show that there exists an invertible linear function $f: V \rightarrow W$.
5. Use the Rank-Nullity Theorem to prove that every invertible matrix is square.
6. Spend a few minutes reading back over the Rank-Nullity Theorem, and thinking about why we might care about a theorem like this. Write 5 reasons why the Rank-Nullity Theorem could be useful in terms of deriving practical information about a matrix.
