
Math 241: Final Project Options

For each of the following project options, you will be expected to do the following things:

1. Read some of the linked material, and do any other necessary research, to understand
what this topic is about, and the algorithms that might be applied to solve the question
indicated.

2. Write some code, as described in each individual project, to perform the associated
algorithm. In many cases this will involve you making some choices about parameters.
Your code will be read by a human, so as long as the choices you make are reasonable
and mathematically justified, they should all be fine.

3. Write a short paper explaining what the algorithm is used for and how/why it works.

You can work either by yourself or with one partner. If you have an algorithm using Linear
Algebra concepts that we have discussed in this class that is NOT on this list that you might
like to explore, please let me know! I may approve a different project if you have a well
thought-out idea. Your work should be submitted via autolab by the Friday of final exam
week.

Your project will be evaluated on the following criteria:

1. Coding portion:

(a) Does your code compile when it is given appropriate data? Does it output some-
thing appropriately?

(b) Does your algorithm do what it purports to do? Do the choices you have made
and parameters you have set make sense in context?

(c) Is your code readable and well commented? Can someone look at it and under-
stand what you are doing, and how?

2. Written portion:

(a) Is your paper clear and readable? Do you demonstrate a strong understanding of
the mathematical concepts in play?

(b) Do you provide a complete, concise explanation of what your chosen algorithm
does, and the circumstances under which it might be used?

(c) Do you provide a complete, concise explanation of why your chosen algorithm
works?

(d) Have you provided a bibliography that shows the research you have used to build
your algorithm and understand it?

Scoring, in more detail: For each of the two parts, the coding and the essay, 20 points will be
assigned and will be given separately (so 40 points in total). Points will be earned roughly
as follows:

• 20 points: Work demonstrates well-developed understanding of concept.

Paper: Mathematics is precise, symbols are clearly defined and correctly manipulated.
Minimal/no typos. Full bibliography with correct citations.

Code: Functions are clearly defined and well-commented. Reader can follow the logic
of the program. Program correctly computes what it claims to compute.

• 16-19 points: Work demonstrates reasonable understanding of concept.

Paper: Mathematics is occasionally fuzzy, symbols may not always be clearly defined.
Minimal/no typos. Full bibliography with correct citations.

Code: Functions are reasonably clear, comments present though perhaps may not
make all calculations apparent. Logic can be figured out but may not be immediately
clear. Program correctly computes what it claims to compute.

• 12-15 points: Work not clearly explained, or presented with slightly incoherent lan-
guage.

Paper: Mathematics is often fuzzy and occasionally wrong, and a clear presentation
of underlying concepts may be lacking. More than minimal typos, minimal inconsis-
tencies. Full bibliography with mostly correct citations.

Code: Logic is difficult to follow and comments are insufficient to explain work. May
have errors compiling, or may not correctly compute desired output.

• 8-11 points: Work is not clearly explained or is explained incoherently.

Paper: Does not meet standards of presentation or writing guidelines. Symbols are
incorrectly defined, incorrectly used, or undefined. More than minimal typos or incon-
sistencies. Bibliography missing elements or presented in an incorrect format.

Code: Logic is difficult to follow or incorrect. Comments are missing or insufficient
to explain work. May have errors compiling, or may not correctly compute desired
output.

• < 8 points: Nobody should score in this range unless they literally do not complete
this assignment. Scores at this level will be given for incomplete work.

1 Spectral Clustering

As we have seen with k-means, the question of how to divide data into clusters is one that
is still of interest to the computer science and data science community. For this project,
you will look at some ideas in how to find clusters among data sets using eigenvalues and
eigenvectors to help.
There are many algorithms for computing these kinds of clusters. Most of them work in a
way sort of like the following:

• First, put a graph on your data. Typically, this graph is some kind of similarity graph,
where two data points will be connected by an edge for which the weight of the edge
is higher if the data points are more similar, and is lower if the data points are more
dissimilar. There are many ways to build such a graph.

• Next, build the adjacency matrix or normalized Laplacian matrix for this graph. If
you don’t know what the Laplacian is, don’t worry! It’s in the reading. But essentially
it is a way to normalize the adjacency matrix so that each row/column (corresponding
to each vertex of the graph, aka data point) is the same weight.

• Now the fun begins.... project your data onto the vector space generated by the
eigenvectors corresponding to the k largest eigenvalues of the matrix you have built.
Why to do this: essentially by building a similarity graph on the data, you’ve oriented
each point in space, where in each dimension it’s indicating “closeness” to another data
point. But that gives every data point its OWN dimension in space, which is, well,
ludicrous. So we can reduce dimensionality, as with PCA, to a good approximation of
that existing n-dimensional embedding.

• Once we’ve reduced to a k-dimensional space via projection, we can treat each row
of the projection matrix as our “new” location for the corresponding data point. We
can then cluster these points using a typical k-means type algorithm, or any other
preferred clustering algorithm that you might uncover in your reading.

As you can see, there are a number of steps here, but the fundamental structure of this type
of algorithm is as follows: data in, clusters out. In between, we use a little graph theory and
a bunch of linear algebra to help us decide how to make clusters.
For this project, you will write an function called cluster that should take in a set of data
and output a set of clusters, as follows:

• Input: A list input_data of lists, and a positive integer k. Each list here represents
a data point. For example, if your data represented people, and showed three char-
acteristics, say, male/female represented by a 0/1, height in inches, and weight in
lb, then each list in input_data would have a form such as [0.0, 60.0, 125.0] or
[1.0, 73.2, 153.2]. You shouldn’t expect to know a priori how long the lists are.
You can assume that the data on these lists will be represented as floats.

• Output: A list, of the same length as input_data, each of whose entries are an integer
between 0 and k-1. This list should be full of integers that indicate the clusters, so that
if the ith element of input_data were assigned to cluster number j, then the output
would have a j in the ith position.

In between, you can use any kind of spectral clustering algorithm you prefer. The specifics
of the algorithm you choose will be explained in your paper. Your paper should also address
the mathematics underlying this idea, and why it gives a reasonable clustering of the data.
Depending on your choices, you may get different answers than someone else who uses a
different set of choice for a spectral clustering algorithm: that is ok!
Some recommended resources for understanding spectral clustering:

• A Tutorial on Spectral Clustering by Ulrike von Luxburg

• Spectral Clustering for Beginners by Amine Aoullay

• Spectral Clustering: A Quick Overview by Charles H Martin

https://www.cs.cmu.edu/~aarti/Class/10701/readings/Luxburg06_TR.pdf
https://towardsdatascience.com/spectral-clustering-for-beginners-d08b7d25b4d8
https://calculatedcontent.com/2012/10/09/spectral-clustering/

2 Power Method

As we have seen in class, singular values and eigenvalues can be very useful tools to un-
derstanding a matrix and how it works. Unfortunately, the problem of precisely computing
the singular values of an n × n matrix A is of order n3, which is, well, a lot. Consider, for
example, the case of performing a PCA on a large image with n× n pixels. The value of n
can rise pretty quickly.
For this project, you will explore a common numerical method for approximating the singular
values of a matrix called the Power Method. This method is at the core of many other, more
sophisticated numerical techniques for approximating singular values. The basic structure
is as follows.

• First, recall that the singular values of a matrix A can be computed as the square roots
of the eigenvalues of ATA. Hence, we could calculate the first singular value by taking
a limit of (ATA)k, and noting that the first singular value/vector dominates that limit.
Unfortunately, taking a limit is a difficult thing for a computer to do. Hence, we can
approximate that limit by simply taking ATA to a reasonably high power, and using
that to estimate the limit.

• Starting with a random vector x, we can consider (ATA)kx. Since the limit converges
to the largest singular value/vector pair, we should have that (ATA)kx ≈ σ2k

1 c1v1,
where σ1 is the largest singular value, and v1 is its corresponding singular vector. We
can then normalize this result to give us an approximate value for v1.

• Once you have the first singular value/vector, you can subtract this part off from the
matrix and proceed to find the next. That is, repeat the above procedure for the
matrix ATA− σ1u1v

T
1 .

Obviously this kind of method works best when the matrix is reasonably sparse, so that
matrix multiplication can be simplified to a lower order algorithm. If you would like to
implement a sparse matrix product for this project, that is your prerogative.
For this project, you will write a function called power_method that takes a matrix and
approximates the first k singular values using the power method.

• Input: A matrix input_matrix, as a numpy array, and a positive integer k.

• Output: A list of lists sing_decomp, where the ith element of sing_decomp takes the
form [sigma_i, v_i, u_i], where sigma_i is the approximate ith singular value of
A, and v_i, u_i are the approximate ith left and right singular values corresponding
to sigma_i.

Some recommended resources for understanding power method:

• Foundations of Data Science: Section 3.7 by Avrim Blum, John Hopcroft, and Ravin-
dran Kannan

• Singular Value Decomposition by Edo Liberty (the bit about power method appears
at the end of this document)

https://www.cs.cornell.edu/jeh/book.pdf
http://www.cs.yale.edu/homes/el327/datamining2013aFiles/07_singular_value_decomposition.pdf

3 PageRank, Markov Chains

For this project, you will be building an algorithm to rank states in a Markov chain based
on importance. This is similar to a Google PageRank algorithm, using random walks to
estimate the importance of a website.
The structure of this kind of method looks something as follows:

• We begin with a Markov chain on a finite state space. You can think of this is a list
of websites, with the links that go between them begin indicated.

• From here, we generate a matrix P that indicates the probabilities of moving from one
site to another. That is, the ij entry of the matrix is P(Xn = i | Xn−1 = j), the chance
of moving from the jth element to the ith. You should be able to verify that if you
multiply P by a vector indicating your current position (represented as the probability
you are in a given state) you should get a vector representing the probabilities of
landing in each of the states after one random step.

• Using the Perron-Frobenius Theorem, we can observe that the largest eigenvalue of
this matrix, even up to absolute value, is 1, and it has a positive eigenvector. All the
other eigenvalues will have absolute value less than 1.

• Now, suppose we begin our random walk at some vector x. If we write x as a linear
combination of eigenvectors and consider the limit limn→∞ P

nx, notice what happens
to the eigenvalues... only 1 does not go to 0. (Specifics, of course, can be found in the
reading!)

• Hence, the limit of the random walk is always the same. We use this as our ranking
vector, and rank nodes higher if we are more likely to visit them on our walk, in the
limit.

For this project, you will write a function called rank that will take in a Markov chain and
output a set of rankings, as follows:

• Input: A Markov chain represented in the following way. You will be provided with
a list of lists links, whose elements are integers, representing links between elements.
The list links[i] represents all links emanating from node i. That is to say, if
links[2]=[0,1,4], it indicates that node 2 is linked to nodes 0, 1, and 4, and hence
we could travel from 2 to each of these in our random walk.

• Output: A list ranks that gives the ranking of each element in the original list. Of
course, in a traditional pagerank algorithm, you would only return some of these,
namely those corresponding to nodes that matched your keyword search, but for our
purposes ranking all websites is fine. For example, if there are 4 nodes in the original
list, your output might take the form ranks=[2, 1, 3, 0], indicating that the most
important node is 2, and the least important is 0.

Some recommended resources for understanding PageRank and Markov chains:

• How Google works: Markov chains and eigenvalues by Christiane Rousseau.

• Notes on PageRank Algorithm by Kenneth Shum

• PageRank Algorithm: The Mathematics of Google Search by Raluca Tanase and Re-
mus Radu

http://blog.kleinproject.org/?p=280
http://home.ie.cuhk.edu.hk/~wkshum/papers/pagerank.pdf
http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

	Spectral Clustering
	Power Method
	PageRank, Markov Chains

