
Cycle Bases

Mary Radcliffe

The goal of this document is to understand what a cycle basis is, and how
to construct one. In order to do this, we’ll first start with some preliminaries
about cycles and subgraphs, and then build the necessary structures.

1 Preliminaries

We have seen graphs used as examples in class, and constructed adjacency
matrices from these graphs. Here, we’ll need to use some special kinds of graphs.
Specifically:

Definition 1. A cycle in a graph is a list of vertices v1, v2, . . . , vn, v1 such that
vi is adjacent to vi+1 for all i ≤ n− 1, vn is adjacent to v1, and no vertices are
repeated.

That definition is pretty formal looking, but it basically describes a logical
thing: just a walk around a bunch of vertices, no backtracking. See, for example,
Figure 1.

Figure 1: A cycle of length 5 (meaning having 5 vertices)

One note to make here is that while we sort of defined a ”starting place”
to define the cycle, we usually don’t think of cycles having a designated “first”
vertex. That is to say, the cycle v1, v2, v3, v1 is the same as the cycle v2, v3, v1, v2.
These two cycles denote the same set of vertices, and in the same order, and
only differ in which one came first on the list.

In general, here, we will be interested in the set of all cycles a graph can
have. See, for example, Figure 2. In this figure, we have a graph G, and we see
that there are 3 different cycles in G.

Specifically, these cycles in red, green, and blue are part of G, and we refer
to them as subgraphs. Very specifically, we have the following definition:

Definition 2. A subgraph H of a graph G is a collection of some vertices from
G and some edges from G. That is, if u and v are adjacent in H, they must
also be adjacent in G, but not vice versa.

1

Figure 2: On the left, we see a graph G. On the right, outlined in different
colors, are all the cycles in G, also called the cycle set of G.

This is all a fancy way of saying that a subgraph of a graph G is any graph
you can build by erasing some of the vertices and/or edges in G, but not adding
any new ones. Importantly, if you erase a vertex, you also have to erase the
edges that touch that vertex.

Definition 3. A connected graph without any cycles is called a tree.

Trees show up throughout graph theory as sort of the backbone of any graph.
Indeed, every graph has a subgraph that includes every vertex and is a tree. Such
a subgraph is called a spanning tree.

Definition 4. A spanning tree in a graph G is a subgraph of G that includes
every vertex of G and is also a tree.

We note here that there are often lots of different spanning trees for a given
graph. See Figure 3 for some examples.

Figure 3: On the left, we see a graph G. On the right, we see three different
spanning trees of G. All these trees contain every vertex of G, but no two are
the same. There are other spanning trees possible here, as well.

2

To construct a spanning tree for a given graph is simple. First, start with
the graph. Then, iteratively remove any edge that appears in a cycle. Once all
cycles are destroyed, the remaining graph is a tree.

Indeed, thinking about this process backwards (starting with a spanning
tree, then iteratively adding edges) will be integral to our construction of a
cycle basis for G. Indeed, let’s consider what happens when we add edges, one
by one, to a spanning tree.

We start with the following tree:

Then we’ll add one edge, shown in red below. Notice that by adding an edge
to a tree, we’re forced to add a cycle. In particular, we add exactly one new
cycle, whose edges are all from the tree except the one red edge.

Now, we’ll do this again, and notice the same thing occurring. We add
exactly one edge, which makes exactly one new cycle, using the edge we made
and edges from the tree.

3

So, is this always what’s going on? Alas, no, as the last red addition shows.
We here add one new edge, but two new cycles appear. In this case, one of the
new cycles includes our new red edge plus only edges from the original tree, but
the other includes the edge added at the second step.

However, we do have the following useful Lemma, whose proof I shall leave
as an exercise.

Lemma 1. Let G be a graph, and let T be a spanning tree of G. For every edge
e not in the spanning tree, there is a unique cycle that includes the edge e and
has all remaining edges in T .

That is to say, when we add edges one by one, even if we create more than one
cycle by doing this, we only create ONE cycle that has all its other edges present
in the spanning tree. The proof of this is straightforward by contradiction: if
there were more than one such cycle, it would necessarily mean there is a cycle
in T , which, by definition, is impossible.

Our finally item of note for this preliminaries section is a definition of an
Eulerian graph. Fundamentally, we can think of an Eulerian graph as a graph
that is built entirely out of cycles. Consider the following example:

Figure 4

Notice that we can break this graph up into a collection of cycles.

Figure 5

One important observation about Eulerian graphs is that the number of
edges at each vertex (this is called the degree of the vertex) is always even. This
is clear to see based on how we have built the graph. Since the graph is made

4

up of a bunch of cycles, each vertex has an option: to be in each cycle, or not.
If it’s in a particular cycle (for example, in the red cycle), that cycle contributes
two edges to its degree (that is, two red edges touch the vertex, for example). If
not, it contributes 0 edges. Hence every vertex has evenly many edges incident
to it.

I’ll note here that this is not the typical definition of an Eulerian graph.
The typical definition has to do with walks, and is pretty interesting in its own
right. If you want to know a little history about graph theory, and where this
idea came from, you should Google the Bridges of Königsburg problem, widely
credited as being the Problem That Started Graph Theory.

Our final note on Eulerian graphs is that the decomposition into cycles isn’t
unique in any way. Here’s another way to do it for the graph above, for example.

Figure 6

In this example, we have the same number of cycles as in the first decompo-
sition, but that’s sheer coincidence. It may not be that way, and that’s ok.

2 A moment for practicality

So, cool, we have trees, and cycles, and Eulerian graphs, and, uh, who cares?

Well. Imagine, if you will, that you might be building a circuit, or electrical
network. In this case, your vertices are nodes of the network, and edges are
representing wires between nodes. Often in this case, the edges are directed
(indicating the direction that voltage will be carried) and weighted, as different
wires have different carrying capacities.

What is important to you, when constructing this network, is that voltage
should balance, so that you aren’t accumulating excess energy at a given point.
This is essentially Kirchhof’s Second Law of Voltage: around any closed loop in
a network, the sum of voltage drops should be 0.

In the next section, we will show how to construct a vector space over the
Eulerian subgraphs of a graph G, called the cycle space of G, and how to build
a basis to generate that vector space. And here, my friends, is the really cool
thing.

Theorem 1. Let G be a (weighted, directed) graph, and let V be its cycle space.
Then G satisfies Kirchhof’s Second Law if and only if G satisfies Kirchhof’s
Second Law on a basis for V .

That is to say, if we can understand how to construct a basis for the cycle
space, we can verify Kirchhof’s Laws JUST by looking at the basis, and not
having to construct every single closed loop in the network.

I am not going to prove this theorem here, though I will touch on it briefly

5

in a later lecture. But hopefully you are sufficiently convinced that this is not
in fact an exercise in futility. Or, perhaps, you disagree, but we shall continue
on our futile project nonetheless.

3 A vector space and a basis

Let G be a graph, and let V be the set of Eulerian subgraphs of G. We define
a vector space on V , called the cycle space of G, over Z2 using the following
addition:

Given H1, H2 ∈ V , we define H1 ⊕H2 to be the subgraph of G that
contains all edges that appear in exactly one of H1 or H2.

Another way to think of this sum is to think that we union up all the edges
in H1 and H2, but since we are working over Z2, any edge that appears twice
gets annihilated. An example of this perspective is shown in Figure 7.

G

H1 H2

H1 + H2

Figure 7

Note that since we are working over Z2, we don’t need to define scalar
multiplication, because there are only two possible scalar products: multiplying
by 0, which yields the empty graph, or multiplying by 1, which yields the same
subgraph back.

In order to show that this is a vector space, we would need to demonstrate
that this definition of addition and scalar multiplication satisfies the 10 condi-
tions we have seen before. Most of these are fairly trivial; perhaps of interest is
only the closure under addition. Note that if we simply added the edges without
cancellation of duplicates, this is trivial; if every vertex has even degree in each
of H1 and H2, then the sum of the two subgraphs clearly has even degree. If an
edge is duplicated, note that we subtract 2 from the sum of the two subgraphs:

6

one from H1 and one from H2, so parity is maintained at each vertex (you can
think of this as adding red degree + blue degree, and then if we subtract an edge
we subtract one from red and one from blue). I leave the remaining properties
as an exercise.

A note here: this writing of the vector space is a bit clunky. It’s cumbersome
to have to draw out a graph every time you want to refer to a vector in the space.
So we can identify this with a subspace of Zm

2 , where m is the number of edges
in G, as follows: number the edges in G from 1 to m. Given a subgraph H of G,
we identify the subgraph with the vector that has a 1 in the i position if edge i
is in H, and 0s elsewhere. Using this presentation of the graphs/vectors in H,
the addition we have defined above is just traditional vector addition in Zm

2 , so
V will in fact be a subspace of Zm

2 .

Now, let us think about how we can build a generating set for this vector
space. From the definition of Eulerian graphs as just the union of a bunch of
cycles, certainly we could form a generating set just by taking all the cycles in
G. Then, every Eulerian graph can be built by adding up appropriate cycles.

However, as we have seen in the example in Figures 4, 5, and 6, this generat-
ing set is not linearly independent. Indeed, in this example, we have an Eulerian
graph that has two different representations as a sum of cycles. By definition of
linear dependence, then, the set of cycles in G is, well, not. So we’d like to be
able to construct a generating set for the space that IS linearly independent.

Here’s where that stuff about trees from the Preliminaries comes back. Recall
that given a graph, we can look at a spanning tree of that graph, and then build
the graph back up bit by bit by adding one edge at a time. Recall also that
when we do that, we add in cycles bit by bit, and by Lemma 1, for each edge
we add in exactly one cycle that has all its other edges in the original T .

This leads us to a super amazing cool theorem.

Theorem 2. Let G be a graph, and let V be its cycle space. Let T be a spanning
tree of G, and for each edge e not in T , let Ce be the unique cycle in G that
contains e and has all other edges in T . Then {Ce | e 6∈ T} is a basis for V .

Recall, from our interlude into practicality, that if we are considering an
electrical network and wish to confirm Kirchhof’s Second Law of Voltage, we
need only check the Law on a basis for V . So, we could just pick a spanning
tree, construct the basis as described in the theorem, and then quickly check
that Kirchhof’s Law is satisfied. This saves us a whole bunch of time if there are
lots of cycles in the graph, since only a relatively small number of them must
be checked.

We close this set of notes with an example of constructing a cycle basis for
a graph.

First, we start with a graph G, and identify a spanning tree T in G:

G T

7

Then, we look at T ⊕ {e}, for every edge e not in the tree T . Each such
graph (there are 6 of them) contains exactly one cycle. We isolate that cycle
and add it to our cycle basis.

Add Other
Edges to T

Identify
Cycle Basis

Figure 8

From here, any Eulerian subgraph of G (that is, any element of the cycle
space) can be written as a Z2-linear combination of these cycles. For example,
let’s take the two Eulerian subgraphs we used in Figure 7. Here is H2 written
in terms of the cycle basis found in Figure 8.

 +

And here is H1:

8

 + +

 + +

Math rules.

9

	Preliminaries
	A moment for practicality
	A vector space and a basis

