Math 228: Solving linear recurrence with eigenvectors

Mary Radcliffe

1 Example

I’ll begin these notes with an example of the eigenvalue-eigenvector technique used for solving linear
recurrence we outlined in class. Since all the recurrences in class had only two terms, I'll do a three-term
recurrence here so you can see the similarity.

Let us consider the recurrence a,, = 2a,—1 + Gn—2 — 2a,—3, subject to ag = 2,a1 = 2,a2 = 4.

As in class, define the vector v,, as

[£2%
Vp = an—1
Ap—2
Notice that
An+1 20y, + Qp_1 — 2052 2 1 =2 an
Vil = an = an, =1 0 O Ap_1
Qp—1 Ap—1 O 1 0 Ap—2
2 1 =2
By defining A= | 1 0 0 [, we thus have that v,,;41 = Av,,. Therefore, since vs is the first vector,
01 0

we have v, 11 = A" tvy

Hence, we would like to represent v,, in terms of the eigenvectors of A. If we are able to do so, then
we can calculate a formula for v,,, and hence for a,,.

First, let’s calculate eigenvectors of A. Note that
2—-X 1 =2
L =X 0 [|[=@2=NA)—=1(=))—2(1)= =N +222 A -2=N - 1)(2-\).
0 1 =X
Hence, the eigenvalues of A are \; = 1, Ay = —1, and A3 = 2.

Next we calculate eigenvectors of A using standard row reduction techniques:

1 1 -2 1 1 -2
M=1:A-X=|1 -1 0 R R 0 -2 2
1 -1 0 1 -1

R3—1R2,R2/2 =2

EEE Lo 1 -1

00 0 |

(10 1]

R1—R2 0 1 1

00 0 |




Examining coefficients, we thus obtain that the first coordinate is the negative of the third, and the
1

second coordinate is also the negative of the third. Hence, the desired eigenvector is x; = 1
1

Without detailing the computations for the remaining eigenvectors, we obtain

1 2
for Ay = —1,x5 = -1 |; for \g=2,x3=1 2
1 1

We therefore wish to write the initial vector vy in terms of x1, X2, X3, as follows:

as 4 1 1 2
Vo = ai = 2 = (1X1 + C9Xo + c3X3 = €1 1 + ¢o -1 +ec3| 2
ao 2 1 1 1

Hence, we consider the linear system c; + co + 2¢3 = 4,¢1 — ¢2 + 2¢3 = 2,¢1 + ¢ + ¢3 = 2. Without
detailing the algebra, we obtain the solution to this system is given by ¢; = —1, co = 1, c3 = 2.

Therefore, we have

Qp
Vp = An—1 = An_2V2
Up—2
= AniQ (—X1 + X9 —|— 2X3)
= —An_2X1 + An_2X2 + 2An_2X3
—(D)" 2% + (1) ?x2 +2(2)" x5

1 1 2
= —| 1 |+ =1 | +2nt | 2
1 1 1

Noting that the first term of the vector is indeed a,,, we thus obtain

ap =—1+(=1)" +2".

2 Theory

In general, this technique will work with any recurrence relation that takes the form
Up = Q1Qp_1 + Q202 + -+ + Qpan_g + p(N),

where p(n) is a polynomial in n. We here sketch the theoretical underpinnings of the technique, in the
case that p(n) = 0.

Imagine a recurrence relation takin the form a,, = a1a,—1 + asan—2 + -+ - + aga,—x, where the «; are
constants and the first & values of the sequence (a,) are known.

Write v,, = . . Note that the first vector defined in this way will always be vi_1 =



ak—1
Af—2

, which is known by the initial conditions.

ao

As in the example above, our goal is to construct a matrix A so that Av, = v, ;1. We note that

Ap+1 Ay Qp + Qo0p—1 + -+ Aplp— k41
Qp, Gnp
Vn41 = : = : 5
Ap— 42 An—k+2

Qp Qg Qg - Qg1 Qg

1 0 0 . 0 0
and hence we may take A = o 1 0 .. 0 0

0o 0 0 1 0
Suppose that A is diagonalizable, and has the eigenvalue-eigenvector pairs (A1, X1), (A2, X2), . . ., (Ak, Xk)-

Write vi_1, our known constant vector, as a linear combination of x1,...,Xg, in the following form:

Vi1 = C1X1 + CoX2 + + + + + CpXj-

Note that since A is diagonalizable, it is necessarily true that there exists constants ¢y, ..., ¢ such that
this equation holds. Moreover, as in the above example, we have that v,, = A" **1v,_; and hence

— — —k+1 —k+1 —k+1
Vy = A" k+1Vk_1 =A" k+1(61X1 + CcoXo + -+ -+ ckxk) = Cl)\? + X1 + CgAg + Xo 4 -+ 4+ Ck)‘z + Xk

Noting that a,, is the first coordinate of v,, we can then read off the first coordinate of the vector to
obtain a formula for a,,.
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