
Math 228: Solving linear recurrence with eigenvectors

Mary Radcliffe

1 Example

I’ll begin these notes with an example of the eigenvalue-eigenvector technique used for solving linear
recurrence we outlined in class. Since all the recurrences in class had only two terms, I’ll do a three-term
recurrence here so you can see the similarity.

Let us consider the recurrence an = 2an−1 + an−2 − 2an−3, subject to a0 = 2, a1 = 2, a2 = 4.

As in class, define the vector vn as

vn =

 an
an−1

an−2

 .

Notice that

vn+1 =

 an+1

an
an−1

 =

 2an + an−1 − 2an−2

an
an−1

 =

 2 1 −2
1 0 0
0 1 0

 an
an−1

an−2

 .

By defining A =

 2 1 −2
1 0 0
0 1 0

, we thus have that vn+1 = Avn. Therefore, since v2 is the first vector,

we have vn+1 = An−1v2

Hence, we would like to represent vn in terms of the eigenvectors of A. If we are able to do so, then
we can calculate a formula for vn, and hence for an.

First, let’s calculate eigenvectors of A. Note that∣∣∣∣∣∣
 2− λ 1 −2

1 −λ 0
0 1 −λ

∣∣∣∣∣∣ = (2− λ)(λ2)− 1(−λ)− 2(1) = −λ3 + 2λ2 + λ− 2 = (λ2 − 1)(2− λ).

Hence, the eigenvalues of A are λ1 = 1, λ2 = −1, and λ3 = 2.

Next we calculate eigenvectors of A using standard row reduction techniques:

λ1 = 1 : A− λI =

 1 1 −2
1 −1 0
0 1 −1

 R2−R1−−−−−→

 1 1 −2
0 −2 2
0 1 −1


R3− 1

2R2,R2/2
−−−−−−−−−→

 1 1 −2
0 1 −1
0 0 0


R1−R2−−−−−→

 1 0 −1
0 1 −1
0 0 0


1



Examining coefficients, we thus obtain that the first coordinate is the negative of the third, and the

second coordinate is also the negative of the third. Hence, the desired eigenvector is x1 =

 1
1
1

.

Without detailing the computations for the remaining eigenvectors, we obtain

for λ2 = −1,x2 =

 1
−1
1

 ; for λ3 = 2,x3 =

 2
2
1

 .

We therefore wish to write the initial vector v2 in terms of x1,x2,x3, as follows:

v2 =

 a2
a1
a0

 =

 4
2
2

 = c1x1 + c2x2 + c3x3 = c1

 1
1
1

+ c2

 1
−1
1

+ c3

 2
2
1

 .

Hence, we consider the linear system c1 + c2 + 2c3 = 4, c1 − c2 + 2c3 = 2, c1 + c2 + c3 = 2. Without
detailing the algebra, we obtain the solution to this system is given by c1 = −1, c2 = 1, c3 = 2.

Therefore, we have

vn =

 an
an−1

an−2

 = An−2v2

= An−2 (−x1 + x2 + 2x3)

= −An−2x1 +An−2x2 + 2An−2x3

= −(1)n−2x1 + (−1)n−2x2 + 2(2)n−2x3

= −

 1
1
1

+ (−1)n

 1
−1
1

+ 2n−1

 2
2
1


Noting that the first term of the vector is indeed an, we thus obtain

an = −1 + (−1)n + 2n.

2 Theory

In general, this technique will work with any recurrence relation that takes the form

an = α1an−1 + α2an−2 + · · ·+ αkan−k + p(n),

where p(n) is a polynomial in n. We here sketch the theoretical underpinnings of the technique, in the
case that p(n) = 0.

Imagine a recurrence relation takin the form an = α1an−1 + α2an−2 + · · ·+ αkan−k, where the αi are
constants and the first k values of the sequence (an) are known.

Write vn =


an
an−1

...
an−k+1

. Note that the first vector defined in this way will always be vk−1 =

2




ak−1

ak−2

...
a0

, which is known by the initial conditions.

As in the example above, our goal is to construct a matrix A so that Avn = vn+1. We note that

vn+1 =


an+1

an
...

an−k+2

 =


αnan + α2an−1 + · · ·+ αkan−k+1

an
...

an−k+2

 ,

and hence we may take A =


α1 α2 α3 · · · αk−1 αk

1 0 0 . . . 0 0
0 1 0 . . . 0 0

...
0 0 0 · · · 1 0

 .

Suppose thatA is diagonalizable, and has the eigenvalue-eigenvector pairs (λ1,x1), (λ2,x2), . . . , (λk,xk).
Write vk−1, our known constant vector, as a linear combination of x1, . . . ,xk, in the following form:

vk−1 = c1x1 + c2x2 + · · ·+ ckxk.

Note that since A is diagonalizable, it is necessarily true that there exists constants c1, . . . , ck such that
this equation holds. Moreover, as in the above example, we have that vn = An−k+1vk−1, and hence

vn = An−k+1vk−1 = An−k+1(c1x1 + c2x2 + · · ·+ ckxk) = c1λ
n−k+1
1 x1 + c2λ

n−k+1
2 x2 + · · ·+ ckλ

n−k+1
k xk.

Noting that an is the first coordinate of vn, we can then read off the first coordinate of the vector to
obtain a formula for an.
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