Math 127: Propositional Logic

Mary Radcliffe

1 What is a proposition?

The fundamentals of proofs are based in an understanding of logic. In order to consider and prove
mathematical statements, we first turn our attention to understanding the structure of these statements,
how to manipulate them, and how to know if they are true.

First, of course, we need a formal understanding of what the word “statement” means.

Definition 1. A proposition is a statement to which it is possible to assign a value of either true or false.

Example 1. Consider the statement
Mary Radcliffe is my 21-127 Professor.

This is a proposition. The statement has a truth value: in particular, if you are enrolled in this
class, it is true, and if you are not, it is false. In any case, provided that we know who the “me” is
that has issued the statement, we can assign it a truth value.

Example 2. Consider the statement
Mary Radcliffe has two children.

This is also a proposition. The statement has a truth value, it is either true or false. You may not
know which truth value to assign to it, but that isn’t relevant: it has a truth value nonetheless.
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The above two examples are demonstrative, but they don’t seem very mathematical. Of course, we
can easily correct that: here are some mathematical propositions:

e 2 is an even number.

e 3 is an even number.

These are both propositions, since each of them has a truth value. One happens to be a true proposition,
the second one false. But how about this one:

z is an even number.

Is this a proposition? It’s hard to say. Out of context, with no understanding of the variable x, we
cannot assign this statement a truth value, so by itself, it doesn’t seem to qualify. If, however, it existed
in a context where x had meaning, it could be a proposition. I give this example to stress, especially, the
importance of definitions in mathematics. You may have noticed in your other math classes, and you will
definitely notice here, that mathematicians are a bit obsessed with precision in defining terms. This is
no accident: without precise definitions, we end up with the kind of unverifiable statements like the one
above. Definitions are critical to writing mathematical proofs.



2 Basic operators and Truth Tables

In order to manipulate propositions, we will first introduce some means of performing arithmetic with
them. In order to do so, we will represent propositions with variables such as p,q,r. We can then build
an arithmetic structure to understand how to combine and relate propositions to each other.

2.1 Conjunction

Our first logical operator is conjunction, a fancy way to say “and.”

Definition 2. Let p and ¢ be propositions. The conjunction of p and g, denoted by p A ¢ is a proposition
that is true when both p and ¢ are true, and false in any other condition.

This sounds a bit complicated, so let’s disentangle this with a nonmathematical example.

Example 3. Consider the proposition
John is an engineer and a runner.

In order for this proposition to be true, two things need to BOTH be true. Namely, we need that
John is an engineer AND that John is a runner. If we take p to be the proposition “John is an
engineer” and take q to be the proposition “John is a runner,” then the above proposition can be
represented as p A g. Clearly, it is true only when both p and ¢ are true; if either of them is false
than p A q is certainly false as well.
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Notice that the truth value of p A q is entirely dependent upon the truth values of p and gq. Moreover,
each of p and ¢ can only take the truth value of True or False, by definition. Hence, in general, we can look
at the truth value of p A ¢ in a general case by examining the various possibilities for p and ¢, individually.
We can do such a thing by considering what is known as a “truth table:” a table where we enumerate all
possible truth values for p and gq.

b A

On the left of this table, we see the two propositions p and ¢ that make up the conjunction p A ¢, and
all their possible truth values. To the right, we see p A ¢, whose truth value is entirely determined based
upon the values assigned to p and ¢, and only can be true in the case that both p and ¢ are true.

2.2 Disjunction

The second logical operator is disjunction, a fancy way to say “or.”

Definition 3. Let p and ¢ be propositions. The disjunction of p and ¢, denoted by pV ¢, is a proposition
that is true when at least one of p or ¢ is true, and false if both p and ¢ are false.

Notice that this is not usually how we use the word “or” in English language. Often, when we say
“or” we mean it to be exclusive. That is to say, if your friend asks “Should we get Mexican or Thai for
dinner?” the response of “Both” is not usually available. Your friend’s question uses an exclusive or: one
thing, or the other, but not both. This is formalized as follows:

Definition 4. Let p and g be propositions. The exclusive disjunction of p and ¢, denoted by p V ¢ or
p B q, is a proposition that is true when exactly one of p or ¢ is true, and false in any other condition.



You may have seen this if you've studied some computer science; in that context the exclusive disjunc-
tion is usually called “xor.” We can clearly see the difference between p V ¢ and p V ¢q by considering a
truth table that includes both propositions:

In much mathematical work, the nonexclusive disjunction is often more useful than the exclusive
disjunction. We will rarely see V show up, and hence we will generally not use it much in developing our
understanding of propositional logic.

2.3 Negation

Our last basic logical operator is negation, a fancy way to say “not.”

Definition 5. Let p be a proposition. The negation of p, denoted —p, is a proposition that is true when
p is false, and false when p is true.

This operator is fairly straightforward: it simply takes the opposite truth value from p. A truth table
for —p takes the form:

We shall use, frequently, the fact that for any proposition p, we have =—p is the same as p; that is,
applying the negation operator twice does nothing to a proposition.

2.4 Propositional Formulae

Armed with these three basic operations, we can now build more complex formulae to represent proposi-
tions. Let’s take a look at an example, to begin.
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Example 4. Let x be an integer. Consider the following proposition about z:
x is positive and odd, or z is negative and odd.

Let’s consider how we can represent this as a propositional formula. Note that as with the above
example about John, we are making multiple assertions about x, and combining them together.
Lets give these assertions propositional variables:

p: x is positive
q: x is negative
r: x is odd
Hence, we can read our proposition as

pand r, or ¢ and r




Nice, now we can simply replace the words “and” and “or” with our symbolic representations A
and V, and we should be on our way! We can now rewrite the proposition as

(pAT)V(gAT)

Nice, so by combining the logical operators we have developed, we can represent much more complex
propositions. These combinations are called propositional formulae.

Definition 6. A propositional formula is a proposition constructed using propositional variables and

logical operators.

A quick note: as with arithmetic formulae, we should be attentive to the order of operations here. That
is to say, we used some parentheses in our example above; were they necessary? Certainly the original
meaning of the proposition intended to group “positive and odd” into one group, and “negative and odd”
into a second group. In most technical cases, we take the following order of precedence for operations:

1. =
A
vV

. = (this will be discussed in Section

EAE NI

. & (this will also be discussed in Section

Under these rules, we could have written our above proposition with no parentheses at all, since it is
presumed that A takes precedence over V.

But let’s not be too hasty. I said above in most technical cases, but there are some writings that take A
and V to have equal precedence (like addition and subtraction in arithmetic). In that case, the meaning of
our proposition would have been lost without parentheses. In general, I would recommend parenthesizing
liberally here, so as not to confuse the reader as to which operations take priority in a given propositional
formula.

Now, let us return to the proposition that we developed in Example 4l namely (p Ar) V (g AT). We
can consider the possible truth values for this proposition using a truth table, as follows:

plagl|r|lpAr|gnr | (pAT)V(gAT)
T|T|T T T T
T|T|F F F F
T|F | T T F T
T|F|F F F F
F|T|T F T T
F|T|F F F F
F|F|T F F F
F|F|F F F F

Notice that we have 3 columns to the left in the truth table, enumerating the various possibilities for
the propositional variables p, ¢, and r. To the right, the column we care about is the last. We include the
intermediary columns p Ar and g Ar simply to help us do the calculation; these columns are not necessary
at all, and the truth table would be equally correct without them.

Now, thinking carefully about this proposition, notice that in both cases p A r and ¢ A r, we require
proposition r to be true for the conjunction to be true. This seems to suggest an alternative way to write
our proposition: we need r, and at least one of p or ¢, so perhaps it is equivalent to write the proposition
as 7 A (pV ¢). But in order to determine whether this is truly the same, we need to know what it means
for two propositions to be the same.



Definition 7. Two propositional formulae are called “logically equivalent” if the two propositions give
the same truth value, regardless of the truth values of the propositional variables from which they are
constructed.

That is to say, the two propositions are logically equivalent (fancy math language for “the same thing”)
provided that no matter how we assign T/F to the variables p, g, , we would expect to get the same truth
value out from the propositional formulae. A really simplistic way of putting it: every row of the truth
table for the two formulae should be the same. Since each row corresponds to a way to assign truth values
to p, q, r, the two propositions are equivalent if they yield the same truth values on every row in the truth
table. Examining this carefully for the example given, we find
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Notice that the two hilighted columns have the same truth values, and hence, as expected, the two
logical formulae (p A7)V (¢ Ar) and r A (pV q) are logically equivalent. We use the notation = to denote
logical equivalence, so we can write (p A7)V (qAr) =rA(pVq).

2.5 De Morgan’s Laws and the Law of Excluded Middle

We begin this section with a perhaps obvious theorem.

Theorem 1 (Law of Excluded Middle). Let p be a proposition. Regardless of the truth value of p, pV (—p)
s always true.

Proof. To prove this theorem, we consider the following truth table:

pll-p|[pV(-p)
T| F T
FI| T T
Notice that regardless of the truth value of p, we have that p V (—p) is always true. O

Logically, this theorem makes perfect sense. For any statement, either the statement is true, or the
statement is not true. There is no in between. This is an example of a tautology:

Definition 8. A propositional formula is called a tautology if the formula is true, regardless of the truth
values of the propositional variables from which it is constructed. Such a formula may be referred to as
“tautologically true.”

In general, then, it is very useful to be able to negate a proposition. Since we know that a proposition
or its negation must be true, understanding how to negate will give us tools to write proofs (more on
this later). Hence, it would be convenient to understand how negation interacts with conjunction and
disjunction. This is precisely the content of De Morgan’s Laws for propositional formulae.

Theorem 2 (De Morgan’s Laws). Let p,q be propositional variables. Then

1. =(pANg) = (—p) V()



2. =(pVaq) = (=p) A(—q)

A full proof of this theorem is left as an exercise; each part can be completed by examining a truth
table and observing that the two columns corresponding to the two propositional formulae are identical.

In plain English, the theorem is also apparent. Consider the first item, which state “not (p and ¢).”
In plain English, this means that it is not true that both p and ¢ are true, so it must be true that at least
one of them is false. That is, either not p or not ¢q. This is precisely the statement on the right hand side
of the first item. The second item is similar.

Using De Morgan’s Laws, we can manipulate propositional formulae without having to resort to truth
tables, as follows:

Example 5. Show that the propositional formula (—p) A (=(p A q)) is logically equivalent to —p.
Notice that, by De Morgan’s Laws, we have

(p)A(=(pAg) = (=p)A((=p)V (—9))

Note that if p is false, then —p is true, so both =p and (—p) V (—q) are true, and hence (—p) A ((—p) V
(—q)) is true. If p is true, then —p is false, and hence (—p) A ((—p) V (—q)) is false. Thus, the logical
value of —p is the same as the logical value of (—p) A ((—p) V (—q)), so

—p=(=p) A ((=p) V (=9)) = (=p) A (=(p A q))-

3 Conditional and biconditional operators

The final logical operators we shall consider are conditional and biconditional operators, also called impli-
cation operators.

3.1 Conditional operator

Definition 9. Let p and ¢ be propositions. The proposition p = ¢ is false if p A (—q) is true, and is true
otherwise. The operator = is called the conditional operator, or implicative operator.

Note that we read or speak the proposition p = g as “p implies ¢” or “if p, then ¢.” In plain English,
the proposition should be true if, whenever p is true, we must have that ¢ is also true. Hence, the only
way for the proposition to fail to be true is in the case that p is true, but ¢ is not. Note that, by definition
and De Morgan’s Laws, we can write this as

p=q=-(pA(=q) =(-p) Vg
so that p = ¢ is true means either p is false, or ¢ is true (or both). This explicitly excludes the case
that p is true and q is false, as desired.

An important note here is that the truth value of p = ¢ is true in the case that p is false, regardless of
what ¢ does. Let’s consider an example to think about why this is so.



Example 6. Let x be a positive integer. Consider the following proposition about x:
If z is an odd prime, then = > 3.

We can write this using propositional variables: define p to be the proposition “z is an odd prime,”
and define ¢ to be the proposition “z > 3.” The proposition here states p = ¢. It is clear that this
proposition is true: anytime p is true, obviously ¢ is also true.

However, suppose we know that p is false. What does that tell us? Well, it tells us that = is not
an odd prime. This gives us no information about whether or not > 3: x could be, for example,
2 or 4 (or lots of other numbers). Hence, if p is false, the conditional statement p = ¢ does not
help us understand information about g. The statement only gives us information about ¢ in the
circumstance that p is true.
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Perhaps this seems obvious to you now, but it is a common mistake in introductory proofs classes like
this one for people to confuse what they know in a conditional proposition like this one, and to assume
that if p is false, then ¢ must also be false. As in the above example, that simply is not correct.

3.2 Biconditional Operator

Definition 10. Let p and g be propositions. The proposition p < ¢ is true if p and g always have the
same truth value. The operator < is called the biconditional operator, or bi-implicative operator.

We read or speak the biconditional proposition p < ¢ as “p if and only if ¢” or “p is equivalent to ¢.”

Formally speaking, the biconditional operator is not fundamentally different from logical equivalence;
that is, p <& ¢ is true is the same thing as saying p = ¢ is true. Indeed, some people use the symbol
< in place of the symbol = when determining if propositional formulae are logically equivalent. In the
context of propositions requiring proof, however, it is common to use < in place of =, and to think
of the biconditional statement as (p = ¢) A (¢ = p). The proof that p < ¢ is logically equivalent to
(p=q) A (¢ = p) is left as an exercise.
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