
Math 127: Division

Mary Radcliffe

1 Definitions and the Division Theorem

In this set of notes, we look to develop a sense of division and divisibility in the integers. We begin by
refreshing some definitions we may have seen before.

Definition 1. Let a, b ∈ Z. We say that b divides a if there exists an integer k such that a = kb. The
number b is called a divisor or factor of a, and the number a is called a multiple of b. Notationally, we
write b|a to denote that b divides a.

We have already seen some results about division in our early work. For example, we showed the
following things (possibly among others):

• If b is even and b|a, then a is even.

• If a, b ∈ Z and a ≥ 2, then a does not divide one of b or b + 1.

• If ab is even, then one of a or b is even.

• If a|b and b|c, then a|c.

In addition, in constructing the rational numbers, we at least alluded to the idea that we could think
about integer division with remainders, and then we left that alone. Time to revive it! We begin our foray
into divisibility with the following theorem.

Theorem 1 (Division Theorem). Let a, b ∈ Z with b 6= 0. Then there exist unique integers q, r ∈ Z such
that a = bq + r and 0 ≤ r < |b|.

Proof. First, note that if a = 0, then q = 0, r = 0 is the unique solution to the equation given.

We consider all other cases according to the signs of a and b.

Case 1: b > 0, a > 0. In order to prove the theorem, there are two parts: first, to show the existence
of these integers q, r, and second, to show their uniqueness.

For the existence, for each n ≥ 0 define rn = a − nb. Let S = {rn | rn ≥ 0}, that is, S is the
set of those rn that are nonnegative. Note that r0 = a > 0, so S is nonempty. By the Well-Ordering
Principle1, S has a minimum element, say rk = a − kb. Then a = kb + rk, by definition. Moreover,
rk+1 = a − (k + 1)b = rk − b < rk, so rk+1 /∈ S, since rk is the minimum of S. But this implies that
rk+1 < 0, so rk − b < 0, and hence rk < b. Therefore, we have found integers k, rk such that a = kb + rk
and 0 ≤ rk < |b| = b, and the existence of such integers is thus established.

For the uniqueness, suppose that a = qb + r = q′b + r′, where q, q′, r, r′ ∈ Z and 0 ≤ r, r′ < b. By
rearranging this equation, we have qb− q′b = r′ − r, so b(q − q′) = r′ − r. Thus, b|(r′ − r). On the other
hand, since 0 ≤ r, r′ < b, we have that −b < r′ − r < b. Note, if q − q′ > 0, then b(q − q′) > b, which is

1Technically, S is not a subset of N here, since 0 might be in S. However, the set N ∪ {0} is also well ordered, so we can
still apply the Well-Ordering Principle here.

1



impossible. If q− q′ < 0, then b(q− q′) < −b, which is also impossible. Therefore, it must be the case that
q − q′ = 0, which implies r′ − r = 0, and thus the representation of a is unique.

Case 2: b < 0, a > 0. Note that any presentation of a = qb + r also implies a = (−q)(−b) + r. The
choice of −q, r are both exist and are unique by Case 1.

Case 3: b > 0, a < 0. By Case 1, we have a unique q, r such that −a = (−q)b + r, with 0 ≤ r < b.
Hence there is a unique q, r such that a = qb − r, with 0 ≤ r < b. If r = 0, this is sufficient for the
problem. If r 6= 0, we can write a = (q − 1)b + (b− r), then, and 0 < b− r < b. Uniqueness will follow by
an argument identical to that in Case 1.

Case 4: b < 0, a < 0. By Case 2, we have a unique q, r such that −a = (−q)b + r, with 0 ≤ r < b.
Proceed as in Case 3 to construct a solution for a. �

Definition 2. Let a, b ∈ Z, with b 6= 0 and let q, r be the numbers guaranteed by Theorem 1. We say
that q is the quotient of a divided by b, and the r is the remainder of a divided by b.

So, the division theorem gives us one way to look at two numbers a, b in the case that neither divides
the other: we can look at the divisibility in terms of remainders. We will revisit this later and define a
structure of arithmetic on remainders, called modular arithmetic.

There is another approach, though, to looking at two numbers that do not have a divisibility relation-
ship. We can look at what divisors they DO have in common.

2 GCDs and the Euclidean Algorithm

Definition 3. Let a, b ∈ Z. An integer d is called a greatest common divisor of a, b, frequently abbreviated
as a gcd of a, b if the following two conditions are met:

• d|a ∧ d|b

• q|a ∧ q|b⇒ q|d.

Example 1. Let a = 20, b = 10. Then both 10 and −10 are gcds for a, b.

In general, we will restrict ourselves to considering positive gcds, so that we do not have this kind of
thing come up. So we wish to define gcd(a, b) to be the positive gcd of a and b. One problem, though: we
need to ensure that such a number exists. If we think of gcd as a function from Z×Z to N, we would like
to make sure that the function is well defined, so that the gcd exists and is unique for every choice of a, b.

Theorem 2. Let a, b ∈ Z. Then a and b have a gcd.

Proof. First, if both a and b are 0, then 0 is a gcd for a and b, since 0 is divisible by q for every q ∈ Z.

If a is negative, we can replace a with −a without impacting the divisibility properties of a. Likewise,
if b is negative, we can replace it with −b. Hence, we may proceed assuming that both a and b are
nonnegative, and at least one of a, b is nonzero. Wolog, suppose that a 6= 0.

Define X = {n ∈ N | n = au + bv for some u, v ∈ Z}. Notice that a = a · 1 + b · 0 and a > 0, so a ∈ X.
Therefore, X 6= ∅, and X is a subset of N, so by the Well Ordering Principle X has a minimum. Let
d = min(X).

Claim 1: d|a.
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Proof. [Proof of Claim 1.] By Theorem 1, there exist unique q, r ∈ Z such that a = qd + r,
and 0 ≤ r < d. Moreover, as d ∈ X, there exist u, v ∈ Z such that d = au+ bv. Hence, we have

r = a− qd

= a− q(au + bv)

= (1− qu)a + (−qv)b.

Hence, if r > 0, we must have r ∈ X. However, since r < d, we cannot have r ∈ X, since
d = min(X). Therefore, r = 0, so a = qd and d|a. �

By the same technique, we can establish the following claim:

Claim 2: d|b.

Hence, we have that d is a common divisor to both a and b. It remains to establish the second property
for a gcd, namely, that if q|a and q|b, we also have q|d.

To that end, suppose that q is a common divisor of a and b, so that there exist integers k, ` such that
a = kq and b = `q. Then we have

d = au + bv = kqu + `qv = q(ku + `v),

and thus q|d.

Therefore, d meets the definition of a gcd for a, b, and thus a gcd must exist. �

This gets us half of the way through our conundrum: we know that a, b have a nonnegative gcd. We
would also like to establish this gcd is unique, which will be done with the following homework exercise:

Proposition 1. Let a, b ∈ Z. If d, d′ are both gcds for a, b, then d = ±d′.

Hence, we can consistently define gcd(a, b) to be the unique nonnegative gcd for two integers a, b. It
will be useful to know, in general, some basic properties of gcd, as follows.

Proposition 2. Let a ∈ Z. Then

• gcd(a, 0) = a.

• gcd(a, 1) = 1.

• For all k ∈ Z, gcd(a, ka) = a

Ok, but in general, how do we calculate gcds? The answer is through a classic algorithm known as the
Euclidean Algorithm. To explain how the algorithm works, we first need a very useful theorem.

Theorem 3. Let a, b ∈ Z, with b 6= 0, and let q, r be the unique integers guaranteed by Theorem 1 having
a = qb + r. Then

gcd(a, b) = gcd(b, r).

Before we prove this theorem, let’s consider what it buys us. Suppose we wish to find the gcd of two
numbers a, b, where wolog a > b. This can be tricky, because we would have to consider all the divisors
of the two numbers, which is a computationally difficult problem. But Theorem 3 tells us that we don’t
really have to do all that; we can reduce the problem to a simpler problem by just dividing a by b, and
picking out the remainder instead. This is a smaller number than a, so it will end up being easier to deal
with. Moreover, we can perform division pretty simply by just looking at a− b, a− 2b, etc, until we find
a negative number; then we know what the division ought to be. We can even do all this work by hand.
For example:
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Example 2. Calculate gcd(67620, 66234).

Solution. This looks atrocious, but it’s not really. First, we can write

67620 = 66234 ∗ 1 + 1386.

Therefore, by Theorem 3, we have that gcd(67620, 66234) = gcd(66234, 1386).
Wash, rinse, repeat.

66234 = 1386 ∗ 47 + 1092.

1386 = 1092 ∗ 1 + 294.

1092 = 294 ∗ 3 + 210.

294 = 210 ∗ 1 + 84.

210 = 84 ∗ 2 + 42.

84 = 42 ∗ 2 + 0.

By repeatedly applying Theorem 3, we can say that gcd(67620, 66234) = gcd(42, 0) = 42 by Propo-
sition 2.

In general, the algorithm can be defined recursively as follows.

Euclidean Algorithm. The Euclidean Algorithm is defined on input a, b, with |a| > |b|, and
produces output gcd(a, b). The algorithm proceeds as follows:

• Initialize r0 = |a|, r1 = |b|.

• While rn > 0: define rn+1 to be the remainder of rn−1 divided by rn.

• If rn = 0, then rn−1 = gcd(a, b).

It remains only to prove Theorem 3. The proof, actually, is pretty straightforward.

Proof. [Proof of Theorem 3] Let a, b, q, r be as in the statement of the theorem. Let d = gcd(a, b). Notice
that as r = a− bq, and both a and b are divisible by d, then r is divisible by d as well.

Moreover, suppose that d′ is an integer such that d′|r and d′|b. Then since a = qb + r, we must also
have that d′|a. But then as d = gcd(a, b), we have that d′|d. Hence, any divisor of both r and b is also a
divisor of d.

Therefore, d meets the definition of gcd for b and r. By uniqueness of the positive gcd, we therefore
have that d = gcd(b, r). �

2.1 Coprime Integers

Definition 4. Let a, b ∈ Z. We say that a and b are coprime, or relatively prime, if a and b share no
common factors. That is to say, a and b are coprime if gcd(a, b) = 1. We write a ⊥ b to denote that a and
b are coprime.

Coprimality can be useful with thinking about common divisors. In particular, we have the following
useful and obvious proposition, whose proof is a homework exercise:

Proposition 3. Let a, b ∈ Z be nonzero, and let d = gcd(a, b). Then
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• a
d and b

d are coprime.

• Write a = dk for some k ∈ Z. Then for y ∈ Z, if a|(dy), then k|y.

3 Linear Diophantine Equations

The previous section gives us an understanding of how to compute gcd(a, b), and also in the proof of
Theorem 2, we show that gcd(a, b) is the smallest positive number that can be written in the form au+ bv
for some u, v ∈ Z.

This leads us to a natural question: what other kind of stuff can be written in the form au+ bv? That
is to say, for what choices of c ∈ Z does the equation au + bv = c have a solution (u, v) ∈ Z× Z?

Example 3. The equation 2u + 4v = c has a solution (u, v) ∈ Z× Z if and only if c is even.

Proof. First, suppose that c is even, so that c = 2k for some k ∈ Z. Take u = k, v = 0. Then
2u + 4v = 2k = c, so 2u + 4v = c has a solution.
On the other hand, if 2u+ 4v = c has a solution, then since both 2u and 4v are even, we must also
have that c is even. �

Ok, very good, but how did we know that c had to be even in that example? If you look at the equation,
you see that each of the terms 2u and 4v are divisible by 2, so obviously when you add them together you
should get something divisible by 2.

Can we generalize? Sure! What about looking at au + bv = c, for a general choice of a, b? If both a
and b are divisible by d, then we should obviously also have that c is divisible by d. As in the example,
this turns out to be the only rule we need.

Theorem 4 (Bezout’s Lemma). Let a, b, c ∈ Z, and put d = gcd(a, b). Then the equation au+ bv = c has
a solution (u, v) ∈ Z× Z if and only if d|c.

Proof. The forward direction is trivial: if au+ bv = c has a solution (u, v) ∈ Z×Z, then as both au and
bv are divisible by d, so too is c.

For the backward direction, suppose that c ∈ Z has d|c, so that c = dk for some k ∈ Z. Recall from
the proof of Theorem 2 that d can be written as ax + by for some x, y ∈ Z. Then c = dk = (ax + by)k =
a(xk) + b(yk), so taking u = xk and v = yk, we have an integer solution to au + bv = c. �

Using the definition of coprimality above, we have the following immediate corollary:

Corollary 1. Let a, b ∈ Z. Then the equation au + bv = 1 has a solution (u, v) ∈ Z × Z if and only if
a ⊥ b.

That is to say, we can solve the equation au + bv = 1 over the integers if and only if a and b share no
common factors at all.

This is fine, then, but it doesn’t seem to actually help us solve real problems. That is, we have an
answer to when a solution exists, but not how to actually find one. This is handled by the so-called Reverse
Euclidean Algorithm.

Example 4. Find integers u, v so that 1092u + 294v = 42.

Solution. These numbers were borrowed from Example 2, so we have already seen via the Eu-
clidean Algorithm that gcd(1092, 294) = 42. In particular, the steps of the Euclidean Algorithm to
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get there were as follows:
1092 = 294 ∗ 3 + 210.

294 = 210 ∗ 1 + 84.

210 = 84 ∗ 2 + 42.

84 = 42 ∗ 2 + 0.

We can rewrite each of these things in terms of their remainders, as follows:

210 = 1092− 294 ∗ 3

84 = 294− 210 ∗ 1

42 = 210− 84 ∗ 2

Now, starting from the last equation, we substitute in:

42 = 210− 84 ∗ 2

= 210− (294− 210 ∗ 1) ∗ 2 = 210 ∗ 3 + 294 ∗ (−2)

= (1092− 294 ∗ 3) ∗ 3 + 294 ∗ (−2)

= 1092 ∗ 3 + 294 ∗ (−11)

Hence, our solution is u = 3 and v = −11.

Excellent, that was good! But it isn’t the only solution. You can check for yourself that u = −4 and
v = 15 also solve the problem in the above example.

In fact, we could construct all kinds of example, just by making small adjustments to u and v. Indeed,
suppose that x and y are integers with ax+ by = 0. Then we could take u+ x and v + y, and that should
generate more solutions to the equation. So now, if we wish to determine all solutions, we need to think
about what kinds of integers there are having ax + by = 0.

Theorem 5. Let a, b ∈ Z be nonzero, and let d = gcd(a, b). Then ax + by = 0 if and only if there exists
k ∈ Z such that x = bk

d and y = −ak
d .

Proof. The backward direction is trivial; clearly any (x, y) taking the described form yields a solution
to the equation.

Now, for the forward direction, suppose ax + by = 0. Write a = nd and b = md, where by Proposition
3 we have that n and d are coprime. We make the following observations:

1. ax = −by, and hence a|(by). Since by = d(my), we have that a|d(my), and hence by Proposition 3,
n|my. Since n and m are relatively prime, n|y. Write y = nt.

2. Likewise to the above, m|x. Write x = ms.

3. x = − b
ay = −mdnt

nd = −mt = b
d (−t), since m = b

d .

Put k = −t, so that x = bk
d . Then y = −a

bx = −ak
d , as desired. �

This Theorem yields the following immediate consequence:

Theorem 6. Let a, b ∈ Z nonzero, and let d = gcd(a, b). Suppose c ∈ Z with d|c, and let (u0, v0) be one
solution to the equation au + bv = c. Then the set of all solutions to the equation is{

(u, v) ∈ Z× Z | u = u0 +
bk

d
, v = v0 −

ak

d
for some k ∈ Z

}
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