Math 127 Homework

Mary Radcliffe

Due 2 May 2019

Complete the following problems. Fully justify each response. You need only turn in those problems marked with a (*).

1. (*) Use Euler's Totient Theorem to calculate $2^{105723}(\bmod 13)$.
2. Let $n \in \mathbb{N}$ and let $a \in \mathbb{Z}$ with $a \perp n$. Euler's Totient Theorem tells us that $a^{\varphi(n)} \equiv 1(\bmod n)$. Is it true that the order of a must be $\varphi(n)$? If so, prove it. If not, explain why not.
3. (*) Let $a, b \in \mathbb{N}$, with $a \perp b$. Prove that $\varphi(a b)=\varphi(a) \varphi(b)$.
(Hint: Define $S_{a b}=\{m \in \mathbb{N} \mid m<a b, m \perp a b\}, S_{a}=\{m \in \mathbb{N} \mid m<a b, m \perp a\}$, and $S_{b}=\{m \in$ $\mathbb{N} \mid m<a b, m \perp b\}$. Define a function $f: S_{a b} \rightarrow S_{a} \times S_{b}$ by $f(x)=(x(\bmod a), x(\bmod b))$. Show that this is well-defined and bijective.)
4. (*) Let m, n be positive integers with $m \perp n$. Let x, y be integers, such that $x \equiv y(\bmod n)$ and $x \equiv y(\bmod m)$. Prove that $x \equiv y(\bmod m n)$.
5. (*) If possible, solve the following system of congruences. If not possible, explain why not:

$$
\begin{aligned}
& x \equiv 4(\bmod 11) \\
& x \equiv 3(\bmod 17) \\
& x \equiv 6(\bmod 18)
\end{aligned}
$$

6. If possible, solve the following system of congruences. If not possible, explain why not:

$$
\begin{aligned}
& 20 x \equiv 9(\bmod 30) \\
& 9 x \equiv 12(\bmod 33) \\
& 36 x \equiv 48(\bmod 60)
\end{aligned}
$$

7. (*) A troop of 17 monkeys store their bananas in 11 piles of equal size, each containing more than one banana, with a twelfth pile of 6 left over. When they divide the bananas into 17 equal piles, none are left over. What is the smallest number of bananas they can have?
8. Let $n \in \mathbb{N}$. For each $1 \leq i \leq n$, let $a_{i}, b_{i} \in \mathbb{R}$ be real numbers with $a_{i}<b_{i}$, and let $I_{i}=\left[a_{i}, b_{i}\right]$, the corresponding real interval.
Define a relation \leq on $\left\{I_{1}, I_{2}, \ldots, I_{n}\right\}$ by $I_{i} \leq I_{j}$ iff $b_{i} \leq a_{j}$ or $i=j$. Prove that this is a partial order.
9. (CHALLENGE: BONUS 10 points) Let $n \in \mathbb{N}$ have prime decomposition $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$. Use inclusion-exclusion to write $\varphi(n)$ in terms of the primes $p_{1}, p_{2}, \ldots, p_{r}$.
