Math 127 Homework

Mary Radcliffe

Due 24 January 2019

Complete the following problems. Fully justify each response. You need only turn in those problems marked with a (*).

1. (*) Prove De Morgan's Laws as stated in Theorem 2 in the Propositional Logic notes.
2. Prove that $p \Leftrightarrow q$ is logically equivalent to $(p \Rightarrow q) \wedge(q \Rightarrow p)$.
3. $\left(^{*}\right)$ Write the following statement as a proposition using propositional variables and logical operators. You may assume that " x is odd" is the logical negation of " x is even."

Let x be a positive integer. Then $x=2$, or x is even and $x>2$, or x is odd and prime, or x is odd and composite.
4. $\left({ }^{*}\right)$ Let p, q, r be propositions. Show that

$$
\neg[(p \wedge q) \vee(p \wedge(\neg r)) \vee(q \wedge r)]
$$

is logically equivalent to

$$
\neg(q \wedge r) \wedge((\neg p) \vee r) .
$$

5. Show that $(p \Rightarrow q) \vee(\neg q)$ is a tautology.
6. Let x, y be rational numbers. Use the method of direct proof to show that $x y, x / y$, and $x-y$ are all rational numbers.
7. $\left({ }^{*}\right)$ Prove the following proposition:

Let d, a, b, u, v be positive integers. If a is divisible by d and b is divisible by d, then $a u+b v$ is divisible by d.
8. (*) Follow the strategy of Example 4 in the Logic and Proof notes to prove the Quadratic formula:

A complex number x is a solution to the equation $a x^{2}+b x+c=0$ if and only if

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

