Math 127 Homework

Mary Radcliffe

Due 7 February 2019

Complete the following problems. Fully justify each response. You need only turn in those problems marked with a (*).

1. Prove the following claim. Explain what proof technique(s) you are using, and why.

Let n be a positive integer. If n is a perfect square, then n leaves a remainder of 0 or 1 when divided by 4.

2. (*) Use the method of contrapositive to prove the Pigeonhole Principle, as stated below:

Let m objects be distributed into n bins. If m > n, then at least one bin contains at least two objects.

3. (*) Prove that for all real numbers x,

$$-5 \le |x+2| - |x-3| \le 5$$

4. Prove the following claim. Explain what proof technique(s) you are using, and why.

Let a, b, c be positive real numbers. If $ab \ge c$, then at least one of a, b is greater than or equal to \sqrt{c} .

5. Consider the following Theorem and Proof.

Theorem 1. For any positive integer n, the sum of all positive integers less than n is not equal to n.

Proof. AFSOC that for any positive integer n, the sum of all positive integers is equal to n. But then consider n = 5: notice that $1+2+3+4 = 10 \neq 5$. Therefore, we have reached a contradiction, and hence for any positive integer n, the sum of all positive integers less than n is not equal to n.

Is this result correct? Is the proof correct? What mistakes have been made?

6. Prove the following statement in three ways: directly, by contradiction, and by contrapositive. Be very explicit about the different assumptions you make in each of the three proofs.

Let x, y be real numbers. If $x^2y = 2x + y$, then if $y \neq 0$, then $x \neq 0$.

7. (*) Prove the following statement in three ways: directly, by contradiction, and by contrapositive. Be very explicit about the different assumptions you make in each of the three proofs.

Let a, b be real numbers. If $a \leq x$ for every x > b, then $a \leq b$.

8. (*) Consider the following statement.

Let *n* be a positive integer, and let y_1, y_2, \ldots, y_n be real numbers. Let $A = \frac{y_1 + y_2 + \cdots + y_n}{n}$ be the average of the y_i 's. There is at least one integer *i* with $1 \le i \le n$ such that $y_i \ge A$, and there is at least one integer *j* with $1 \le j \le n$ such that $y_j \le A$.

Explain why you cannot prove this statement by contrapositive. Then prove it using some other technique.

- 9. Give an example of a proposition of the form $\forall x, \exists y, p(x, y) \land q(x)$. You need not be concerned with the truth value of your proposition. Write the formal negation of your statement.
- 10. (*) Suppose that x is a member of the positive integers $\{1, 2, 3, ...\}$ and y is a member of the rationals. Let p(x, y) be the statement that xy = 1. Consider the following two statements:
 - (a) $\forall x, \exists y, p(x, y)$
 - (b) $\exists y, \forall x, p(x, y)$

How do these statements differ? Are either of them true?