Math 127 Homework

Mary Radcliffe

Due 7 February 2019

Complete the following problems. Fully justify each response. You need only turn in those problems marked with a (*).

1. Prove the following claim. Explain what proof technique(s) you are using, and why.

Let n be a positive integer. If n is a perfect square, then n leaves a remainder of 0 or 1 when divided by 4 .
2. (*) Use the method of contrapositive to prove the Pigeonhole Principle, as stated below:

Let m objects be distributed into n bins. If $m>n$, then at least one bin contains at least two objects.
3. $\left(^{*}\right)$ Prove that for all real numbers x,

$$
-5 \leq|x+2|-|x-3| \leq 5
$$

4. Prove the following claim. Explain what proof technique(s) you are using, and why.

Let a, b, c be positive real numbers. If $a b \geq c$, then at least one of a, b is greater than or equal to \sqrt{c}.
5. Consider the following Theorem and Proof.

Theorem 1. For any positive integer n, the sum of all positive integers less than n is not equal to n.

Proof. AFSOC that for any positive integer n, the sum of all positive integers is equal to n. But then consider $n=5$: notice that $1+2+3+4=10 \neq 5$. Therefore, we have reached a contradiction, and hence for any positive integer n, the sum of all positive integers less than n is not equal to n.

Is this result correct? Is the proof correct? What mistakes have been made?
6. Prove the following statement in three ways: directly, by contradiction, and by contrapositive. Be very explicit about the different assumptions you make in each of the three proofs.

Let x, y be real numbers. If $x^{2} y=2 x+y$, then if $y \neq 0$, then $x \neq 0$.
7. (*) Prove the following statement in three ways: directly, by contradiction, and by contrapositive. Be very explicit about the different assumptions you make in each of the three proofs.

Let a, b be real numbers. If $a \leq x$ for every $x>b$, then $a \leq b$.
8. (*) Consider the following statement.

Let n be a positive integer, and let $y_{1}, y_{2}, \ldots, y_{n}$ be real numbers. Let $A=\frac{y_{1}+y_{2}+\cdots+y_{n}}{n}$ be the average of the y_{i} 's. There is at least one integer i with $1 \leq i \leq n$ such that $y_{i} \geq A$, and there is at least one integer j with $1 \leq j \leq n$ such that $y_{j} \leq A$.

Explain why you cannot prove this statement by contrapositive. Then prove it using some other technique.
9. Give an example of a proposition of the form $\forall x, \exists y, p(x, y) \wedge q(x)$. You need not be concerned with the truth value of your proposition. Write the formal negation of your statement.
10. (*) Suppose that x is a member of the positive integers $\{1,2,3, \ldots\}$ and y is a member of the rationals. Let $p(x, y)$ be the statement that $x y=1$. Consider the following two statements:
(a) $\forall x, \exists y, p(x, y)$
(b) $\exists y, \forall x, p(x, y)$

How do these statements differ? Are either of them true?

