# Math 127 Homework 

Mary Radcliffe

## Due 9 April 2019

Complete the following problems. Fully justify each response. You need only turn in those problems marked with a (*).

1. $\left(^{*}\right)$ A partition of $n$ is a sequence of integers $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that $a_{i} \geq 0$ for each $i$, and $\sum_{i=1}^{k} a_{i}=n$. The number $k$ is called the number of parts of the partition.
(a) Let $S(n, k)$ denote the set of partitions of $n$ into $k$ parts. Calculate $|S(n, k)|$ for at least 4 different choices of $(n, k)$. Make sure to use both differing $n$ values and differing $k$ values.

Hint: If you're not sure how to construct the bijection, look at some examples with small $k$ (like $k=2$ ). It might help to think about the numbers in $[n+k-1]$ along a number line.
2. Let $X$ and $Y$ be finite sets. Define $X^{Y}=\{f: Y \rightarrow X\}$, the set of all possible functions from $Y$ to $X$. Prove that $\left|X^{Y}\right|=|X|^{|Y|}$.
3. Prove Theorem 2 in the Infinite Cardinality Notes
4. (*) Prove Theorem 4 in the Infinite Cardinality Notes. Hint: Use a technique similar to that described in the proof of Theorem 3.
5. Let $X$ be a countable set. Prove that $\{A \subseteq X \mid A$ is finite $\}$ is countable.
6. (*) Let $a, b \in \mathbb{R}$ with $a<b$. Prove that $|\{x \in \mathbb{R} \mid a<x<b\}|=|\{x \in \mathbb{R} \mid 0<x<1\}|$.
7. Use the technique of Theorem 5 in the Infinite Cardinality Notes to prove Theorem 6.
8. $\left(^{*}\right)$ Let $X=\{x \in \mathbb{R} \mid$ the decimal representation of $x$ contains only 4 s and 7 s$\}$. Is $X$ countable or uncountable? Prove that your answer is correct.
9. (a) Let $X$ be the set of all sequences $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ in $\mathbb{N}$ having the property that $a_{i} \leq a_{i+1}$ for all $i \geq 1$. For example, here is an element of $X:(1,4,6,10,26,1583, \ldots)$. Is $X$ countable or uncountable? Prove that your answer is correct.
(b) Let $X$ be the set of all sequences $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ in $\mathbb{N}$ having the property that $a_{i} \geq a_{i+1}$ for all $i \geq 1$. For example, here is an element of $X:(19,16,2,1,1,1,1, \ldots)$. Is $X$ countable or uncountable? Prove that your answer is correct.
10. Prove that $|\mathbb{R} \times \mathbb{R}|=|\mathbb{R}|$.
11. (*) For each of the following sets, determine if it is finite, countably infinite, or uncountable. You need not prove your answer is correct, but you should give a reason for your response.
(a) $\left\{x \in \mathbb{R} \mid x^{2} \in \mathbb{Z}\right\}$
(b) For some $n \in \mathbb{N},\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n} \mid a_{1}+a_{2}+\cdots+a_{n}<5000\right\}$
(c) $\{S \in \mathcal{P}(\mathbb{N}) \mid \mathbb{N} \backslash S$ is finite $\}$
(d) $\mathbb{R} \backslash S$, where $S$ is a countable set
(e) $\{x \in \mathbb{R} \mid$ there is a decimal expansion of $x$ with only even digits $\}$
