Math 127 Homework

Mary Radcliffe

Due 25 April 2019

Complete the following problems. Fully justify each response. You need only turn in those problems marked with a (*).

- 1. Prove Propositions 1 and 2 from Division notes.
- 2. Prove Proposition 3 from Division notes.
- 3. (*) Suppose $p_1, p_2, \ldots, p_r \in \mathbb{Z}$ are distinct primes. Let $a = p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r}$, and let $b = p_1^{j_1} p_2^{j_2} \ldots p_r^{j_r}$, where $k_1, k_2, \ldots, k_r, j_1, j_2, \ldots, j_r$ are nonnegative integers. Prove that $gcd(a, b) = p_1^{m_1} p_2^{m_2} \ldots p_r^{m_r}$, where $m_i = \min\{k_i, j_i\}$ for all $1 \le i \le r$.
- 4. For each of the following equations: determine if the equation has solutions. If so, write an expression for all possible solutions to the equation. If not, explain how you know there are no solutions.
 - (a) 12a + 9b = 15.
 - (b) 12a + 9b = 1.
 - (c) 2a + 3b = 1.
 - (d) 50000a + 18412b = 1.
- 5. (*) Let $a, b, c \in \mathbb{Z}$. Prove that if $a \perp b$ and a|(bc), then a|c.
- 6. Given $a, b \in \mathbb{Z}$, define the *least common multiple* of a, b to be the unique nonnegative integer m such that
 - $a|m \wedge b|m$.
 - $(a|q \wedge b|q) \Rightarrow m|q.$

We write $m = \operatorname{lcm}(a, b)$.

- (a) Prove that this definition of lcm is well-defined.
- (b) Prove that if $a, b \in \mathbb{Z}$, $m = \operatorname{lcm}(a, b)$ and $d = \operatorname{gcd}(a, b)$, then md = |ab|.
- 7. Define a relation \sim on \mathbb{N} by $x \sim y$ if gcd(x, y) = 1. Is this an equivalence relation? If so, prove it. If not, explain why not.
- 8. Let X, Y be sets, and let $f : X \to Y$ be a function. Define a relation \sim on X by $x_1 \sim x_2$ if $f(x_1) = f(x_2)$. Is this an equivalence relation? If so, prove it. If not, explain why not.
- 9. (*) Let X be a set, and let \sim_1 and \sim_2 be two equivalence relations on X. Define a relation on X by $x \sim y \equiv (x \sim_1 y) \land (x \sim_2 y)$. Prove that \sim is an equivalence relation. Describe the classes of \sim in terms of the classes of \sim_1 and \sim_2 .

10. (*) Let $a, b \in \mathbb{Z}, n \in \mathbb{N}$, and $k, \ell \in \mathbb{N}$, such that $k \equiv \ell \pmod{n}$ and $a \equiv b \pmod{n}$.

- (a) Is it true that $a^k \equiv b^k \pmod{n}$? If so, prove it. If not, find a counterexample.
- (b) Is it true that $a^k \equiv a^\ell \pmod{n}$? If so, prove it. If not, find a counterexample.

- 11. Let $a \in \mathbb{Z}$ and let $n \in \mathbb{N}$. Suppose that $a \perp n$. Show that u, u' are both multiplicative inverses for $a \pmod{n}$ if and only if u is a multiplicative inverse for $a \pmod{n}$ and $u \equiv u' \pmod{n}$.
- 12. (*) Let p be a positive prime, and $k \in \mathbb{N}$. Prove that $\varphi(p^k) = p^k p^{k-1}$.