Math 127 Homework

Mary Radcliffe

Due 25 April 2019

Complete the following problems. Fully justify each response. You need only turn in those problems marked with a (*).

1. Prove Propositions 1 and 2 from Division notes.
2. Prove Proposition 3 from Division notes.
3. $\left(^{*}\right)$ Suppose $p_{1}, p_{2}, \ldots, p_{r} \in \mathbb{Z}$ are distinct primes. Let $a=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$, and let $b=p_{1}^{j_{1}} p_{2}^{j_{2}} \ldots p_{r}^{j_{r}}$, where $k_{1}, k_{2}, \ldots, k_{r}, j_{1}, j_{2}, \ldots, j_{r}$ are nonnegative integers. Prove that $\operatorname{gcd}(a, b)=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{r}^{m_{r}}$, where $m_{i}=\min \left\{k_{i}, j_{i}\right\}$ for all $1 \leq i \leq r$.
4. For each of the following equations: determine if the equation has solutions. If so, write an expression for all possible solutions to the equation. If not, explain how you know there are no solutions.
(a) $12 a+9 b=15$.
(b) $12 a+9 b=1$.
(c) $2 a+3 b=1$.
(d) $50000 a+18412 b=1$.
5. (*) Let $a, b, c \in \mathbb{Z}$. Prove that if $a \perp b$ and $a \mid(b c)$, then $a \mid c$.
6. Given $a, b \in \mathbb{Z}$, define the least common multiple of a, b to be the unique nonnegative integer m such that

- $a|m \wedge b| m$.
- $(a|q \wedge b| q) \Rightarrow m \mid q$.

We write $m=\operatorname{lcm}(a, b)$.
(a) Prove that this definition of lcm is well-defined.
(b) Prove that if $a, b \in \mathbb{Z}, m=\operatorname{lcm}(a, b)$ and $d=\operatorname{gcd}(a, b)$, then $m d=|a b|$.
7. Define a relation \sim on \mathbb{N} by $x \sim y$ if $\operatorname{gcd}(x, y)=1$. Is this an equivalence relation? If so, prove it. If not, explain why not.
8. Let X, Y be sets, and let $f: X \rightarrow Y$ be a function. Define a relation \sim on X by $x_{1} \sim x_{2}$ if $f\left(x_{1}\right)=f\left(x_{2}\right)$. Is this an equivalence relation? If so, prove it. If not, explain why not.
9. (*) Let X be a set, and let \sim_{1} and \sim_{2} be two equivalence relations on X. Define a relation on X by $x \sim y \equiv\left(x \sim_{1} y\right) \wedge\left(x \sim_{2} y\right)$. Prove that \sim is an equivalence relation. Describe the classes of \sim in terms of the classes of \sim_{1} and \sim_{2}.
10. (*) Let $a, b \in \mathbb{Z}, n \in \mathbb{N}$, and $k, \ell \in \mathbb{N}$, such that $k \equiv \ell(\bmod n)$ and $a \equiv b(\bmod n)$.
(a) Is it true that $a^{k} \equiv b^{k}(\bmod n)$? If so, prove it. If not, find a counterexample.
(b) Is it true that $a^{k} \equiv a^{\ell}(\bmod n)$? If so, prove it. If not, find a counterexample.
11. Let $a \in \mathbb{Z}$ and let $n \in \mathbb{N}$. Suppose that $a \perp n$. Show that u, u^{\prime} are both multiplicative inverses for $a(\bmod n)$ if and only if u is a multiplicative inverse for $a(\bmod n)$ and $u \equiv u^{\prime}(\bmod n)$.
12. $\left(^{*}\right)$ Let p be a positive prime, and $k \in \mathbb{N}$. Prove that $\varphi\left(p^{k}\right)=p^{k}-p^{k-1}$.

