21-127 Final Exam Practice Problems

Mary Radcliffe

1 Logic and Proof Techniques

- 1. Let p, q be logical propositions. Prove that $(\neg(p \land q)) \land (p \lor q)$ is logically equivalent to $(p \land \neg q) \lor (q \land \neg p)$.
- 2. Prove that \sqrt{p} is irrational for any prime p > 0.
- 3. Find the smallest n > 0 such that n! is divisible by 990.
- 4. Let p and q be logical propositions.
 - (a) Prove that $p \Rightarrow q$ is logically equivalent to $\neg q \Rightarrow \neg p$.
 - (b) Explain in words why the above statement makes sense.
- 5. Let p, q, r be logical propositions. Prove that

$$[p \Rightarrow (q \Rightarrow r)] \Rightarrow [(p \Rightarrow q) \Rightarrow (p \Rightarrow r)]$$

is tautologically true (that is, it is true regardless of the truth values of p, q, r).

2 Induction

- 1. Use induction to prove that $\sum_{i=1}^{k} (2i-1) = k^2$.
- 2. Let $n \in \mathbb{N}$ be written, in base 10, as $111 \cdots 11$, where there are 3^k 1s in the base expansion. Prove that n is divisible by 3^k .
- 3. Suppose you draw *n* straight lines in the plane, where no two lines are parallel and no three lines meet at a point. How many regions have you divided the plane into? Prove that your answer is correct.
- 4. Define a sequence by $a_0 = 0$, $a_1 = 1$, and $a_n = 3a_{n-1} 2a_{n-2}$ for $n \ge 2$. Derive and prove a nonrecursive formula for a_n .
- 5. Prove that for $x_1, x_2, \ldots, x_n \in \mathbb{R}$, with $x_i \ge 0$ for all i,

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \dots x_n}.$$

6. Let $k \in \mathbb{N}$, with $k \neq 0$. Prove that k(k+1)(k+2) is divisible by 3.

3 Set Theory and functions

- 1. Let U_1, U_2, \ldots, U_k be a finite partition of a set X, and let $A \subseteq X$. Prove that $A = \bigcup_{i=1}^k (A \cap U_i)$.
- 2. Let X and Y be sets. Prove that $X \subseteq Y$ if and only if $X = Y \setminus (Y \setminus X)$.
- 3. Define a function $f : \mathbb{R} \to \mathbb{R}$ by the following: for every $a \in \mathbb{R}$, let f(a) = x, where $x^2 + 2ax + a^2 = 0$. Prove that this function is well-defined.
- 4. Let X and Y be sets, and let $f: X \to Y$ be a function.
 - (a) For $A, B \subseteq X$, prove that $f(A \cup B) = f(A) \cup f(B)$.
 - (b) For $A, B \subseteq X$, prove that $f(A \cap B) \subseteq f(A) \cap f(B)$, but that sometimes these sets may not be equal.
- 5. Let $f : X \to Y$ be a function. Prove that f is injective if and only if $f(A \setminus B) = f(A) \setminus f(B)$ for every $A, B \subseteq X$.
- 6. Let $f : X \to X$ be a function, where X is a finite set. Prove that f is injective if and only if f is surjective. Explain why this is not true in the case that X is infinite.
- 7. We know that function composition is associative. Is it also commutative? Why/why not?

4 Counting: finite

- 1. (a) How many ways are there to rearrange the letters in the word "VEC-TOR"?
 - (b) How many ways are there to rearrange the letters in the word "TRUST," in such a way that the two Ts are not next to each other?
 - (c) How many ways are there to rearrange the letters in the word "MATH-EMATICS" so that no two consecutive letters are the same?
- 2. Let $n \in \mathbb{N}$, with $n \ge 1$. How many surjective functions are there from [n+1] to [n]?
- 3. Prove that for all $n, m, k \in \mathbb{N}$, we have

$$\sum_{\ell=0}^{k} \binom{n}{\ell} \binom{m}{k-\ell} = \binom{n+m}{k}$$

4. Use counting in two ways to prove that for all $n, k \in \mathbb{N}$ with $n \ge k > 0$, we have

$$\sum_{j=n-k}^{n} \binom{n}{j} = \sum_{j=n-k}^{n} \binom{j-1}{n-k-1} 2^{n-j}.$$

- 5. Use Inclusion-Exclusion to determine the number of subsets of [20] that contain a multiple of 5.
- 6. Suppose we have a box containing a set of standard chess pieces. You select three pieces from the box. In how many ways can you select the pieces so that

- (a) all three are the same color.
- (b) all three are the same color and all three are pawns.
- (c) all three are rooks.
- From a standard deck of cards, you deal out a five-card poker hand. How many different hand have at least three cards of the same type (i.e., a 3-of-a-kind or 4-of-a-kind).

5 Counting: infinite

- 1. Suppose that A, B, C are countably infinite disjoint sets. Prove that $A \cup B \cup C$ is countably infinite directly, by finding a bijection between $A \cup B \cup C$ and \mathbb{N} .
- 2. Let $\mathcal{F} = \{f : X \to \{0, 1\}\}$, where X is any set. Carefully go through the Cantor diagonalization argument to show that $|\mathcal{F}| > |X|$.
- 3. Let X, Y be nonempty sets of positive real numbers. Define

$$XY = \{xy \mid x \in X, y \in Y\}$$

Prove that XY is infinite if and only if at least one of X or Y is infinite.

4. Let \mathcal{A} be a collection of sets. We say that \mathcal{A} has the *finite intersection* property if the intersection of any finite number of sets in \mathcal{A} is nonempty.

Give an example of an infinite collection of sets \mathcal{A} that have the finite intersection property, but $\bigcap \mathcal{A}$ is empty.

$A \in \mathcal{A}$

6 Divisibility and Number Theory

- 1. Use the Euclidean Algorithm to prove that for all $n \in \mathbb{N}$, the fraction $\frac{12n+1}{30n+2}$ is in lowest terms.
- 2. Suppose that $a, b, c, d \in \mathbb{N}$ with ab cd divides each of a, b, c, and d. Prove that $ab cd = \pm 1$.
- 3. Find the set of all integer solutions to the equation 3x + 4y = 5.

7 Modular arithmetic

- 1. Suppose that $a \equiv b \pmod{n}$, and $c \equiv d \pmod{n}$. Prove that $ac \equiv bd \pmod{n}$.
- 2. Calculate the remainder of 3^{1000} when divided by 7.
- 3. Suppose that $a, b, c \in \mathbb{Z}_n$, and $a + b \equiv a + c \mod n$. Is it true that $b \equiv c \mod n$? If so, prove it. If not, explain why not.
- 4. Find the set of all solutions to the congruences

$$x \equiv 7 \mod 11$$
$$x \equiv 3 \mod 5$$
$$x \equiv 1 \mod 6$$

- 5. Suppose n > 1 is an integer such that $4((n-1)!+1) \equiv 0 \mod n$. Prove that n = 4 or n is prime.
- 6. Let $S \subseteq [2n]$ with $|S| \ge n+1$. Prove that there exist $a, b \in S, a \ne b$, with a|b.

8 Posets

- 1. Define a relation \leq on \mathbb{N} by $x \leq y$ if and only if $x \leq y$ and x and y have the same parity. Is \mathbb{N} a poset under \leq ? If so, prove it. If not, explain why not.
- 2. Define a relation \leq on \mathbb{N} by $x \leq y$ if and only if $x \leq y$ and $x \perp y$. Is \mathbb{N} a poset under \leq ? If so, prove it. If not, explain why not.

9 Sample Short Answer problems:

- 1. Explain, in your own words, how and why the Principle of Weak Induction works.
- 2. Explain, in your own words, how and why the Principle of Strong Induction works.
- 3. When does a function have an inverse? Why?
- 4. Let p(x, y) be a logical formula. Explain the difference between the meaning of the statements $\forall x, \exists y, p(x, y)$ and $\exists y, \forall x, p(x, y)$, and how the proofs of these statements might also differ.
- 5. Explain, perhaps using pictures, why two sets are the same size if and only if there is a bijection between them.
- 6. What is the Inductive Axiom (from the Peano Axioms)? How is it useful?
- 7. Explain the relationship between multiplicative inverses and gcds. Why does this relationship exist?
- 8. State the Euler Totient Theorem. Why is this theorem useful?
- 9. Describe Cantor's diagonalization method, and what it can be used to prove.