
21-127 Exam 1 Review Problems: Solutions

Mary Radcliffe

1. Prove that (¬(p∧q))∧r is logically equivalent to ¬((p∨(¬r))∧(q∨(¬r))).

Solution: We consider the following two truth tables:

p q r p ∧ q ¬(p ∧ q) (¬(p ∧ q)) ∧ r
T T T T F F
F T T F T T
T F T F T T
F F T F T T
T T F T F F
F T F F T F
T F F F T F
F F F F T F

p q r ¬r p ∨ (¬r) q ∨ (¬r) (p ∨ (¬r)) ∧ (q ∨ (¬r)) ¬((p ∨ (¬r)) ∧ (q ∨ (¬r)))
T T T F T T T F
F T T F F T F T
T F T F T F F T
F F T F F F F T
T T F T T T T F
F T F T T T T F
T F F T T T T F
F F F T T T T F

Therefore, as the columns corresponding to (¬(p ∧ q)) ∧ r and
¬((p∨(¬r))∧(q∨(¬r))) are equal, the two formulae are logically
equivalent.

2. Prove that (p =⇒ q) ∧ (¬p =⇒ q) is logically equivalent to q.

Solution: Again, we consider the following truth table:

p q ¬p p⇒ q (¬p)⇒ q (p⇒ q) ∧ ((¬p)⇒ q)
T T F T T T
F T T T T T
T F F F T F
F F T T F F

Note that the column for q and for (p ⇒ q) ∧ ((¬p) ⇒ q) are
identical, and hence the two propositions are logically equiva-
lent.

3. Suppose that x and y both have the range of real numbers. Explain the
difference between the following two statements.

• ∀x,∃y, x2 = y
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• ∃y,∀x, x2 = y

Solution: The first statement says that for any x ∈ R, a real
number y can be chosen (possibly depending upon x) in order
to satisfy the equation x2 = y.

The second statement says that there is a real number y, that
can be chosen independently of x, that satisfies the equation
x2 = y for every choice of x ∈ R.

Clearly the first statement is true, and the second is false.

4. Write the following statement as a propositional formula. Then prove it.

Let n ∈ N. If n2 is divisible by 4 and n3 is divisible by 27, then
n is divisible by 6.

Solution: Let p(n) be the proposition “n2 is divisible by 4;” let
q(n) be the proposition “n3 is divisible by 27;” let r(n) be the
proposition “n is divisible by 2;” and let t(n) be the proposition
“n is divisible by 3.” The statement can then be written as

∀n, p(n) ∧ q(n)⇒ r(n) ∧ t(n).

Now, let us prove the statement. Let n ∈ N be such that p(n)∧
q(n) is true.

Write n = 2k + r, where r = 0 or 1, according to the division
theorem. Then n2 = (2k+r)2 = 4k2+4kr+r2 = 4(k2+kr)+r2.
Since p(n) is true, it must be the case that n2 is divisible by 4,
so r2 must be divisible by 4. But r2 is either 0 or 1, so it must
be that r2 = 0 and r = 0. Therefore, n = 2k, and hence r(n) is
true. Hence, we conclude p(n) ∧ q(n)⇒ r(n).

Similarly, write n = 3` + r, where r = 0, 1, or 2, according to
the division theorem. Then n3 = (3` + r)3 = 27`3 + 27`2r +
9`r2 + r3 = 27(`3 + `2r) + r2(9`+ r). As q(n) is true, we must
have that 27 divides n3, and thus 27 must divide r2(9`+ r). We
consider three cases, according to the value of r.

Case 1: r = 0. Then r2(9`+r) = 0 and is divisible by 27. Case
2: r = 1. Then r2(9`+ r) = 9`+ 1, which is not divisible by 27
for any choice of `. Case 3: r = 2. Then r2(9`+ r) = 4(9`+2).
Note that as 27 and 4 share no factors, this can only be divisible
by 27 if 9` + 2 is divisible by 27. But this is impossible, and
hence this is not divisible by 27 for any choice of `.

Therefore, we must have r = 0, and thus n = 3`. Hence t(n) is
true, and we conclude that p(n) ∧ q(n)⇒ t(n).

As both p(n)∧ q(n)⇒ r(n) and p(n)∧ q(n)⇒ t(n) are true, we
therefore have p(n) ∧ q(n)⇒ r(n) ∧ t(n) is also true.

5. Write the following statement as a propositional formula. Then prove it.

There is no integer value of x satisfying 0x = 1.

Solution: Let x be from the range of integers, take p(x) to be
the proposition “0x = 1.” The statment then can be written as

¬(∃x, p(x)).

To prove this statement, we note that it is equivalent by De
Morgan’s laws to prove the proposition ∀x,¬p(x). We consider
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two cases. First, if x = 0, then 0x = 0 6= 1. Second, if x 6= 0,
then we note that 1/x 6= 0. Therefore, if 0x = 1, it would be
the case that 1/x = 0, which is impossible.

Therefore, no value of x can make p(x) true. Thus, ∀x,¬p(x).

6. Suppose p(x) is a polynomial that can be written as

p(x) = (x− a1)(x− a2) . . . (x− an).

Prove that α is a root of p(x) if and only if α = ai for some i with
1 ≤ i ≤ n.

Solution: We first observe the following:

Lemma 1. If n ≥ 1 and a1, a2, . . . , an ∈ R satisfy a1a2 . . . an =
0, then ai = 0 for at least one value of i between 1 and n.

Proof of Lemma. We proceed by induction on n. We consider
the base cases as n = 1 and n = 2.

For n = 1, notice that a1 = 0, and we are done.

For n = 2, suppose that a1a2 = 0. If a1 = 0, we are done.
If not, we may divide both sides of the expression by a1, and
therefore obtain a2 = 0/a1 = 0.

Now, suppose that for some n ∈ N, the result is known. Let
us consider the (n + 1)-fold product a1a2 . . . an+1 = 0. Take
a′2 = a2 . . . an+1. Then a1a2 . . . an+1 = a1a

′
2 = 0, and hence

by the case that n = 2 above, we must have either a1 = 0 or
a′2 = 0. If a1 = 0, then we are done. If not, then a′2 = 0, and by
the inductive hypothesis, it must be the case that at least one
of a2, . . . , an+1 is 0.

Therefore, for any n ∈ N, if a1a2 . . . an = 0, then ai = 0 for at
least one value of i between 1 and n.

Now, let us return to the polynomials. Let p(x) = (x− a1)(x−
a2) . . . (x− an). We consider first the forward direction.

If α is a root of p(x), then p(α) = (α−a1)(α−a2) . . . (α−an) = 0.
By the Lemma, then, we must have that α − ai = 0 for some
choice of i, that is, α = ai for some choice of i.

For the converse, suppose that α = ai for some choice of i. Then
clearly p(α) = 0, as p(α) = (α− a1)(α− a2) . . . (α− an).

Hence, α is a root of p(x) if and only if α = ai for some i.

7. Let a, u, b, v, d ∈ N. For each of the following, determine if it is true or
false. Prove that your answer is correct.

(a) If d|a and d|b, then d|(au+ bv).

Solution: True. Let n,m ∈ Z be such that a = dn and
b = dm. Then au + bv = dnu + dmv = d(nu + mv), and
therefore d|(au+ bv).

(b) If d|(au+ bv) then d|a and d|b.
Solution: False. Consider, for example, a = 1, u = 3, b =
1, v = 3, d = 2. Notice that d does not divide either a or b,
but d does divide au+ bv = 6.

(c) If d|a and d does not divide b or v, then d does not divide au+ bv.
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Solution: False. Consider d = 6, a = 6, b = 2, v = 3, and
u = 1. Then d|a, d does not divide either b or v, but au+bv =
12, which is divisible by 6 = d.

(d) If d does not divide any of a, u, b, v, then d does not divide au+ bv.

Solution: False. Take a = 2, u = 3, b = 2, v = 3, d = 6, and
note that d does not divide any of a, u, b, or v, but it does
divide au+ bv = 12.

8. Find all real solutions to the equation

√
x+ 10 +

√
x+ 5 = 5.

Prove that your answer is correct.

Solution: First consider:

x is a solution to the equation ⇒
√
x+ 10 +

√
x+ 5 = 5

⇒ (
√
x+ 10 +

√
x+ 5)2 = 52

⇒ x+ 10 + 2
√

(x+ 10)(x+ 5) + x+ 5 = 25

⇒
√
x2 + 15x+ 50 = 5− x

⇒ x2 + 15x+ 50 = x2 − 10x+ 25

⇒ 25x = −25

⇒ x = −1.

Moreover,

x = −1 ⇒
√
x+ 10 +

√
x+ 5 =

√
9 +
√

4 = 5

⇒ x is a solution to the equation .

Therefore, x is a solution to the given equation if and only if
x = −1.

9. Use the method of proof by contradiction to prove the AM-GM inequality:
if a, b ∈ R with a, b > 0, then a+b

2 ≥
√
ab.

Solution: Suppose for the sake of contradiction that a+b
2 <√

ab for some choice of a, b ∈ R with a, b > 0. Let us square
both sides, to obtain

(a+ b)2

4
< ab ⇒ a2+2ab+b2 < 4ab ⇒ a2−2ab+b2 < 0.

But a2 − 2ab + b2 = (a − b)2, and hence we have that (a −
b)2 < 0. This is impossible, as the square of any real number is
nonnegative. Therefore, we cannot have a, b ∈ R with a, b > 0
and having a+b

2 <
√
ab.

Thus, for all a, b ∈ R with a, b > 0, we have a+b
2 ≥

√
ab.

10. Suppose that a, b ∈ Z. Prove by contradiction that if 4|(a2 − 3b2) then at
least one of a, b is even.
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Solution: Suppose for the sake of contradiction that 4|(a2−3b2)
but that both a, b are odd. Then there exist integers k, j, ` such
that 4k = a2 − 3b2, and a = 2j + 1 and b = 2` + 1. Then we
have

4k = (2j + 1)2 − 3(2`+ 1)2

= 4j2 + 4j + 1− 12`2 − 12`− 3

= 4(j2 + j − 3`2 − 3`)− 2.

By rearranging, we thus obtain 2 = 4(j2 + j − 3`2 − 3` − k),
and hence 2 is divisible by 4. This is clearly impossible, and
therefore the original assumption is impossible.

Thus, if 4|(a2 − 3b2), we must have that at least one of a, b is
even.

11. Prove, by contradiction, the following: ∀x ∈ R, if x ≥ 1, then
√
x ≤ x.

Solution: Suppose, for the sake of contradiction, that x ∈ R
has x ≥ 1 but

√
x > x. We then obtain

√
x > x ⇒ 1 >

x√
x

⇒ 1 >
√
x

⇒ 1 · 1 >
√
x ·
√
x = x

⇒ x < 1.

This is in direct contradiction to the assumption that x ≥ 1.

Therefore, if x ∈ R, x ≥ 1, we must have that
√
x < x.

12. On a certain island, each inhabitant always lies or always tells the truth.
Calvin and Beatrice live on the island.

Calvin says: “Exactly one of us is lying.”

Beatrice says: “Calvin is telling the truth.”

Determine who is telling the truth and who is lying. Prove that your
answer is correct.

Solution: Both Calvin and Beatrice are liars.

To prove this, let us suppose that Beatrice is telling the truth.
Then her statement “Calvin is telling the truth” is true, and
hence Calvin is also telling the truth. Hence, Calvin’s statement
that “Exactly one of us is lying” is also true. But we already
have established that neither Calvin nor Beatrice is lying, and
hence this is impossible.

Therefore, it must be the case that Beatrice is lying. Hence, her
statement “Calvin is telling the truth” is false, and thus Calvin
must also be lying.

Hence, Calvin and Beatrice are both liars.

13. Let n ∈ N with n ≥ 2. Suppose that for all k ∈ N with 2 ≤ k ≤
√
n, k

does not divide n. Prove that n is prime.

Solution: Suppose, for contrapositive, that n ∈ N with n ≥ 2
and n is not prime. Then there exist 2 ≤ a, b < n having
ab = n. If a ≤

√
n, then we are done, hence let us suppose that

a >
√
n. Then we have b < n√

n
, and thus in either case one of
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a, b is an integer between 2 and
√
n that divides n. Therefore,

by contrapositive, if no integers k with 2 ≤ k ≤
√
n divide n,

we must have that n is prime.

14. Prove that for any n ∈ N,

n∑
k=0

k3 =

(
n∑

k=0

k

)2

.

Solution: Recall from lecture that

n∑
k=0

k =
n(n+ 1)

2
. Thus, we

need prove that

n∑
k=0

k3 =

(
n(n+ 1)

2

)2

=
n2(n+ 1)2

4
.

We work by induction on n. Note that for n = 0, the result is
immediate, as both the left and right hand side of the equation
are 0.

Suppose that for some n, it is known that

n∑
k=0

k3 =
n2(n+ 1)2

4
.

Consider, then,

n+1∑
k=0

k3 = (n+ 1)3 +

n∑
k=0

k3

= (n+ 1)3 + k3 =
n2(n+ 1)2

4

= (n+ 1)2
(
n+ 1 +

n2

4

)
= (n+ 1)2

(
n2 + 4n+ 4

4

)
= (n+ 1)2

(n+ 2)2

4
,

as desired.

Therefore, by induction,

n∑
k=0

k3 =
n2(n+ 1)2

4
for all n ∈ N.

15. Suppose an+1 = 5an − 6an−1 for any n ≥ 1, with a0 = 1 and a1 = 1.
Prove that an = 2n+1 − 3n for all n ∈ N.

Solution: We work by strong induction on n. Notice, for the
cases of n = 0 and n = 1, the result is immediate.

Suppose that ak = 2k+1 − 3k for all k satisfying 1 ≤ k ≤ n.

Then

an+1 = 5an − 6an−1

= 5(2n+1 − 3n)− 6(2n − 3n−1)

= 10 ∗ 2n − 6 ∗ 2n − 15 ∗ 3n−1 + 6 ∗ 3n−1

= 4 ∗ 2n − 9 ∗ 3n−1

= 2n+1 − 3n+1.

Therefore, by strong induction, for all n ∈ N, we have an =
2n+1 − 3n.

16. Let n ∈ N, with n ≥ 1. Prove that 11n − 6 is divisible by 5.
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Solution: We work by induction on n. Notice the base case,
where n = 1, is immediate, since 111 − 6 = 5.

Suppose now that the result is known for some n. Write 11n −
6 = 5k for some k ∈ Z. Consider 11n+1 − 6 = 11 ∗ 11n − 6 =
11 ∗ (11n − 6) + 66− 6 = 11 ∗ 5k+ 60 = 5(11k+ 12). Therefore,
11n+1 − 6 is divisible by 5.

By induction, then 11n − 6 is divisible by 5 for all n ≥ 1.

17. Let n ∈ N. Prove that

n∑
k=1

1

k(k + 1)
=

n

n+ 1
.

Solution: We work by induction on n. Notice that for n = 0,
the left hand side of the equation is the empty sum, which is 0,
as is the right hand side.

Now, suppose that for some n it is known that

n∑
k=1

1

k(k + 1)
=

n

n+ 1
. Consider

n+1∑
k=1

1

k(k + 1)
=

1

(n+ 1)(n+ 2)
+

n∑
k=1

1

k(k + 1)

=
1

(n+ 1)(n+ 2)
+

n

n+ 1

=
1 + n(n+ 2)

(n+ 1)(n+ 2)

=
(n+ 1)2

(n+ 1)(n+ 2)
=
n+ 1

n+ 2
.

Therefore, for any n ∈ N, we have

n∑
k=1

1

k(k + 1)
=

n

n+ 1
.

18. Let n,m ∈ N, with n,m ≥ 1. A chocolate bar is made up of an n×m grid
of squares. You break the chocolate bar into 1 × 1 pieces by iteratively
breaking along a grid line. How many times must you make a break?
Prove that your answer is correct.

Solution: We claim that you must make nm− 1 total breaks.

Our proof proceeds by strong induction on the product nm.
Note that the smallest possible product is nm = 1, in which
case n = 1 and m = 1. This serves as our base case. In this
case, the chocolate bar has only one square, and hence 0 breaks
are needed.

Now, suppose that we have an n × m chocolate bar, where it
is known that for any k × j chocolate bar with kj < nm, that
kj − 1 breaks are needed to separate the chocolate bar into all
its squares.

We first break the chocolate bar in one place. Without loss of
generality, suppose we break below the kth row, where 1 ≤ k ≤
n − 1, leaving us with two pieces, one of dimension k ×m and
the other of dimension n − k × m. Note that by the strong
induction hypothesis, we need break these two pieces km − 1
and (n − k)m − 1 times, respectively, in order to separate the
chocolate bar into all its squares.
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Therefore, the total number of breaks needed is

1+km−1+(n−k)m−1 = 1+km−1+nm−km−1 = nm−1.

Thus, by strong induction, the claim holds for any n,m.
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