21-127 Exam 1 Review Materials

Mary Radcliffe

Major topics for your first exam include:

- Fluency in the notation and structure of propositional formulae, including building truth tables to establish logical equivalence and translating mathematical statements into propositional formulae
- Fluency in propositional operators, De Morgan's Laws for propositions
- Basics of proofwriting: how to structure proofs by direct proof, contradiction, contrapositive, cases, biconditional proofs. Be able to prove, if asked, that a given proof technique is valid.
- Understanding of quantifiers, when to use them, how to interpret them, and De Morgan's Laws for quantifiers
- Familiarity with the important number sets we use: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
- Peano Axioms and how we formalize numbers
- Induction, both strong and weak: you should know both how to use these tools, when to apply them, and why/how they work. You should be able to prove the Principles of Weak and Strong Induction from Peano Axioms.

Terms to know:

- Proposition
- Conjunction
- Disjunction
- Exclusive disjunction
- Negation
- Propositional Formula
- Tautology
- Conditional/Biconditional operator
- Universal/existential quantifier
- Limit
- Divides/divisible
- Prime

Some practice problems:

1. Prove that $(\neg(p \wedge q)) \wedge r$ is logically equivalent to $\neg((p \vee(\neg r)) \wedge(q \vee(\neg r)))$.
2. Prove that $(p \Longrightarrow q) \wedge(\neg p \Longrightarrow q)$ is logically equivalent to q.
3. Suppose that x and y both have the range of real numbers. Explain the difference between the following two statements.

- $\forall x, \exists y, x^{2}=y$
- $\exists y, \forall x, x^{2}=y$

4. Write the following statement as a propositional formula. Then prove it.

Let $n \in \mathbb{N}$. If n^{2} is divisible by 4 and n^{3} is divisible by 27 , then n is divisible by 6 .
5. Write the following statement as a propositional formula. Then prove it.

There is no integer value of x satisfying $0 x=1$.
6. Suppose $p(x)$ is a polynomial that can be written as

$$
p(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)
$$

Prove that α is a root of $p(x)$ if and only if $\alpha=a_{i}$ for some i with $1 \leq i \leq n$.
7. Let $a, u, b, v, d \in \mathbb{N}$. Recall the notation $d \mid a$ indicates that a is divisible by d. For each of the following, determine if it is true or false. Prove that your answer is correct.
(a) If $d \mid a$ and $d \mid b$, then $d \mid(a u+b v)$.
(b) If $d \mid(a u+b v)$ then $d \mid a$ and $d \mid b$.
(c) If $d \mid a$ and d does not divide b or v, then d does not divide $a u+b v$.
(d) If d does not divide any of a, u, b, v, then d does not divide $a u+b v$.
8. Find all real solutions to the equation

$$
\sqrt{x+10}+\sqrt{x+5}=5
$$

Prove that your answer is correct.
9. Use the method of proof by contradiction to prove the AM-GM inequality: if $a, b \in \mathbb{R}$ with $a, b>0$, then $\frac{a+b}{2} \geq \sqrt{a b}$.
10. Suppose that $a, b \in \mathbb{Z}$. Prove by contradiction that if $4 \mid\left(a^{2}-3 b^{2}\right)$ then at least one of a, b is even.
11. Prove, by contradiction, the following: $\forall x \in \mathbb{R}$, if $x \geq 1$, then $\sqrt{x} \leq x$.
12. On a certain island, each inhabitant always lies or always tells the truth. Calvin and Beatrice live on the island.

Calvin says: "Exactly one of us is lying."
Beatrice says: "Calvin is telling the truth."
Determine who is telling the truth and who is lying. Prove that your answer is correct.
13. Let $n \in \mathbb{N}$ with $n \geq 2$. Suppose that for all $k \in \mathbb{N}$ with $2 \leq k \leq \sqrt{n}, k$ does not divide n. Prove that n is prime.
14. Prove that for any $n \in \mathbb{N}, \sum_{k=0}^{n} k^{3}=\left(\sum_{k=0}^{n} k\right)^{2}$.
15. Suppose $a_{n+1}=5 a_{n}-6 a_{n-1}$ for any $n \geq 1$, with $a_{0}=1$ and $a_{1}=1$. Prove that $a_{n}=2^{n+1}-3^{n}$ for all $n \in \mathbb{N}$.
16. Let $n \in \mathbb{N}$, with $n \geq 1$. Prove that $11^{n}-6$ is divisible by 5 .
17. Let $n \in \mathbb{N}$. Prove that $\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1}$.
18. Let $n, m \in \mathbb{N}$, with $n, m \geq 1$. A chocolate bar is made up of an $n \times m$ grid of squares. You break the chocolate bar into 1×1 pieces by iteratively breaking along a grid line. How many times must you make a break? Prove that your answer is correct.

